88 视频分析—基于均值迁移的对象移动分析
代码
import cv2 as cv
cap = cv.VideoCapture('../images/balltest.mp4')
# 读取第一帧
ret,frame = cap.read()
cv.namedWindow("CAS Demo", cv.WINDOW_AUTOSIZE)
x, y, w, h = cv.selectROI("CAS Demo", frame, True, False)
track_window = (x, y, w, h)
# 获取ROI直方图
roi = frame[y:y+h, x:x+w]
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)
mask = cv.inRange(hsv_roi, (26, 43, 46), (34, 255, 255))
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)
# 设置搜索跟踪分析
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
while True:
ret, frame = cap.read()
if ret is False:
break;
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1)
# 均值迁移,搜索更新roi区域
ret, track_window = cv.meanShift(dst, track_window, term_crit)
# 绘制窗口
x,y,w,h = track_window
cv.rectangle(frame, (x,y), (x+w,y+h), 255,2)
cv.imshow('CAS Demo',frame)
k = cv.waitKey(60) & 0xff
if k == 27:
break
else:
cv.imwrite(chr(k)+".jpg",frame)
cv.destroyAllWindows()
cap.release()
实验结果
解释
均值迁移移动对象分析,主要是基于直方图分布与反向投影实现移动对象的轨迹跟踪,其核心的思想是对反向投影之后的图像做均值迁移(meanshift)从而发现密度最高的区域,也是对象分布最大的区域。完整的算法流程如下:
1, 读取图像一帧
2, HSV直方图
3, 反向投影该帧
4, 使用means shift寻找最大分布密度
5, 更新窗口直至最后一帧
OpenCV中meanshift的API函数如下:
retval, window = cv.meanShift(probImage, window, criteria)
probImage
输入图像,是直方图反向投影的结果window
搜索窗口,ROI对象区域criteria
均值迁移停止条件
所有内容均来源于贾志刚老师的知识星球——OpenCV研习社,本文为个人整理学习,已获得贾老师授权,有兴趣、有能力的可以加入贾老师的知识星球进行深入学习。