1,背景及原理
归并排序(英语:Mergesort),是建立在归并操作上的一种有效的排序算法,效率为O(nlogn)。1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法的一个非常典型的应用,且各层分治递归可以同时进行。
2,算法思路
- 基本思路
归并排序就是先递归地分解数组,再合并数组。下面是实现过程:
首先考虑下如何将二个已经排好序的数列合并。这个很简单,只要从比较二个数列的第一个数,谁小就先取谁,取的数存放在一个辅助数组里面,取后就在对应数列中删除这个数。然后再进行比较,如果有数列为空,那直接将另一个数列的数据依次取出即可。
那么如何才能让这两个数组内数据分别有序呢?可以将A,B组各自再分成二组。依次类推,不断进行递归,当分出来的小组只有一个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的二个小组就可以了。
- 可视轨迹
- 实例程序
public class Merge {
public static void sort(Comparable[] a) {
//辅助数组
Comparable[] aux = new Comparable[a.length];
sort(a, aux, 0, a.length-1);
}
// 递归实现子数组有序
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
if (hi <= lo) return;
int mid = lo + (hi - lo) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid + 1, hi);
merge(a, aux, lo, mid, hi);
}
// 合并两个有序数组
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {
// 先将a数组复制到aux辅助数组中
for (int k = lo; k <= hi; k++) {
aux[k] = a[k];
}
// 再合并到a数组中
int i = lo, j = mid+1;
for (int k = lo; k <= hi; k++) {
if (i > mid) a[k] = aux[j++];
else if (j > hi) a[k] = aux[i++];
else if (less(aux[j], aux[i])) a[k] = aux[j++];
else a[k] = aux[i++];
}
}
// v是否小于w ?
private static boolean less(Comparable v, Comparable w) {
return v.compareTo(w) < 0;
}
// 交换a[i]和a[j]
private static void exch(Object[] a, int i, int j) {
Object swap = a[i];
a[i] = a[j];
a[j] = swap;
}
// 打印数组到输出
private static void show(Comparable[] a) {
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
System.out.println();
}
// 测试函数
public static void main(String[] args) {
Comparable[] a = new Comparable[]
{'B','F','S','R','T','J','D','A','Z','V','Y','H','K','I','P','Q','C','G','N','U','M','E','O'};
System.out.print("排序前:");
show(a);
System.out.print("排序后:");
Selection.sort(a);
show(a);
}
}
【程序输出】
排序前:B F S R T J D A Z V Y H K I P Q C G N U M E O
排序后:A B C D E F G H I J K M N O P Q R S T U V Y Z