马尔科夫决策过程MDP - Lecture Note for CS188(暨CS181 ShanghaiTech)

说明:笔记旨在整理我校CS181课程的基本概念(PPT借用了Berkeley CS188)。由于授课及考试语言为英文,故英文出没可能

目录

 

1 Markov Decision Processes mechanics

1.1 Markov Decision definitions

1.2 Markov 涵义

1.3 最优策略optimal policy

1.4  MDP搜索树 MDP search tree

2 Solving MDPs

2.1 Optimal Quantities

2.2 Value of states

2.3 Value iteration

2.4 Policy iteration

Reference


1 Markov Decision Processes mechanics

1.1 Markov Decision definitions

A MDP is defined by: 

1.2 Markov 涵义

For markov decision processes, "Markov" means action outcomes depend only on the current state:

P(S_{t+1}=s'|S_t=s_t, A_t=a_t, S_{t-1}=s_{t-1}, A_{t-1},\cdots S_0=s_0) = P(S_{t+1}=s'|S_t=s_t, A_t=a_t)

1.3 最优策略optimal policy

For MDP, we want an <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值