马尔科夫决策过程MDP - Lecture Note for CS188(暨CS181 ShanghaiTech)

说明:笔记旨在整理我校CS181课程的基本概念(PPT借用了Berkeley CS188)。由于授课及考试语言为英文,故英文出没可能

目录

 

1 Markov Decision Processes mechanics

1.1 Markov Decision definitions

1.2 Markov 涵义

1.3 最优策略optimal policy

1.4  MDP搜索树 MDP search tree

2 Solving MDPs

2.1 Optimal Quantities

2.2 Value of states

2.3 Value iteration

2.4 Policy iteration

Reference


1 Markov Decision Processes mechanics

1.1 Markov Decision definitions

A MDP is defined by: 

1.2 Markov 涵义

For markov decision processes, "Markov" means action outcomes depend only on the current state:

P(S_{t+1}=s'|S_t=s_t, A_t=a_t, S_{t-1}=s_{t-1}, A_{t-1},\cdots S_0=s_0) = P(S_{t+1}=s'|S_t=s_t, A_t=a_t)

1.3 最优策略optimal policy

For MDP, we want an optimal policy \pi^*: S \mapsto A:

  • A policy π gives an action for each state
  • An optimal policy is one that maximizes expected utility if allowed
  • An explicity policy defines a reflex agent

1.4  MDP搜索树 MDP search tree

5. Discounting: each time we descend a level, we multiply in the discount once. Redefine Rewards R(s, a, s') with discount γ

2 Solving MDPs

2.1 Optimal Quantities

1. The value (utility) of a state s: V^*(s)=expected utility starting in s and acting optimally.

2. The value (utility) of a q-state (s,a): Q^*(s,a)=expected utility starting out having taken action a from state s and (therefore) acting optimally

3. The optimal policy: \pi^*(s)=optimal action from state s

2.2 Value of states

2.3 Value iteration

1.Define V_k(s) to be the optimal value of s if the game ends in k more time steps

time-limited value evaluation

2.Policy extraction

\pi^*(s)=\arg \max_a \sum_{s'} T(s, a, s')[R(s, a, s')+\gamma V^*(s')]=\arg \max_a Q^*(s, a)

2.4 Policy iteration

Step1 Policy evaluation:

Step2: Policy improvement: After evaluation(step 1), we get v^{\pi_i}(s')

Policy iteration: repeat two steps until policy converges

Reference

1. Artificial Intelligence, A Modern Approach. 3rd Edition. Stuart R., Peter N. Chapter 17

2. UC berkeley, CS188. Lecture 13 Markov Decision Process

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值