ccc-pytorch-宝可梦自定义数据集实战-自定义网络训练实战(10)

上一步已经实现了读取图片的功能(pokemon写成了pokeman,已经修改),只需要完善网络模型进行训练即可

第一步:基于已完成的ResNet模型进行修改

之前完成的ResNet18的网络结构

import torch
from torch import  nn
from torch.nn import functional as F

class ResBlk(nn.Module):

    def __init__(self,ch_in,ch_out,stride=1):

        super(ResBlk,self).__init__()
        self.conv1 = nn.Conv2d(ch_in,ch_out,kernel_size=3,stride=stride,padding=1)
        self.bn1 = nn.BatchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(ch_out,ch_out,kernel_size=3,stride=1,padding=1)
        self.bn2 = nn.BatchNorm2d(ch_out)

        self.extra = nn.Sequential()
        if ch_out != ch_in:
            self.extra = nn.Sequential(
                nn.Conv2d(ch_in,ch_out,kernel_size=1,stride=stride),
                nn.BatchNorm2d(ch_out)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        #[b, ch_in, h, w] = > [b, ch_out, h, w]
        out = self.extra(x) + out
        out = F.relu((out))
        return out

class ResNet18(nn.Module):
    def __init__(self,num_class):
        super(ResNet18, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(3,64,kernel_size=3,stride=3,padding=0),
            nn.BatchNorm2d(64)
        )
        # followed 4 blocks
        # [b, 64, h, w] => [b, 128, h ,w]
        self.blk1 = ResBlk(64,128)
        # [b, 128, h, w] => [b, 256, h ,w]
        self.blk2 = ResBlk(128,256)
        # [b, 256, h, w] => [b, 512, h ,w]
        self.blk3 = ResBlk(256,512)
        # [b, 512, h, w] => [b, 1024, h ,w]
        self.blk4 = ResBlk(512,512)

        self.outlayer = nn.Linear(512*1*1,num_class)

    def forward(self,x):
        x = F.relu(self.conv1(x))

        x = self.blk1(x)
        x = self.blk2(x)
        x = self.blk3(x)
        x = self.blk4(x)
        print('after conv:', x.shape)
        # [b, 512, h, w] => [b, 512, 1, 1]
        x = F.adaptive_avg_pool2d(x, [1, 1])
        print('after pool:', x.shape)
        x = x.view(x.size(0), -1)
        x = self.outlayer(x)

        return x

def main():
    blk = ResBlk(64,128,stride=2)
    tmp = torch.randn(2,64,224,224)
    out = blk(tmp)
    print('block:',out.shape)
    model  = ResNet18(5)
    tmp = torch.randn(2,3,224,224)
    out = model(tmp)
    print('resnet:',out.shape)
    p = sum(map(lambda p:p.numel(), model.parameters()))
    print('parameters size:',p)

if __name__ == '__main__':
    main()

在这里插入图片描述

第二步:绘制训练、验证、测试集训练过程

import torch
from torch import optim,nn
import visdom
import torchvision
from torch.utils.data import DataLoader
from pokemon import Pokemon
from resnet import ResNet18

batchsz = 32
lr = 1e-3
epochs = 10


device = torch.device('cuda')
torch.manual_seed(1234)

train_db = Pokemon('pokemon', 224, mode='train')
val_db = Pokemon('pokemon', 224, mode='val')
test_db = Pokemon('pokemon', 224, mode='test')
train_loader = DataLoader(train_db, batch_size=batchsz, shuffle=True,
                          num_workers=4)
val_loader = DataLoader(val_db, batch_size=batchsz, num_workers=2)
test_loader = DataLoader(test_db, batch_size=batchsz, num_workers=2)


def evalute(model, loader):
    model.eval()

    correct = 0
    total = len(loader.dataset)

    for x,y in loader:
        x,y = x.to(device),y.to(device)
        with torch.no_grad():
            logits = model(x)
            pred = logits.argmax(dim=1)
        correct += torch.eq(pred,y).sum().float().item()

    return correct/total

def main():
    if hasattr(torch.cuda, 'empty_cache'):
        torch.cuda.empty_cache()

    model = ResNet18(5).to(device)
    optimizer = optim.Adam(model.parameters(),lr=lr)
    criteon = nn.CrossEntropyLoss()

    best_acc,best_epoch = 0,0

    for epoch in range(epochs):

        for step,(x,y) in enumerate(train_loader):
            # x:[b,3,224,224]
            x,y = x.to(device),y.to(device)
            model.train()
            logits = model(x)
            loss = criteon(logits,y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        if epoch % 2 ==0:
            val_acc = evalute(model,val_loader)
            if val_acc>best_acc:
                best_epoch = epoch
                best_acc = val_acc

                torch.save(model.state_dict(),'best.mdl')

    print('best acc:', best_acc, 'best epoch:', best_epoch)
    model .load_state_dict(torch.load('best.mdl'))
    print('loaded from ckpt')
    test_acc = evalute(model,test_loader)
    print('test acc:',test_acc)

if __name__ == '__main__':
    main()
排查错误1

这里代码运行出现问题:报错如下
image-20230313202512817
经过排查,发现pokemon中对原始数据划分有误,太粗心了!
image-20230313204903097

排查错误2

接着训练过程中爆显存了,考虑到降低resnet训练时的参数数量
image-20230313205024832
经过简单修改后的resnet模型代码:

import torch
from torch import  nn
from torch.nn import functional as F

class ResBlk(nn.Module):

    def __init__(self,ch_in,ch_out,stride=1):

        super(ResBlk,self).__init__()
        self.conv1 = nn.Conv2d(ch_in,ch_out,kernel_size=3,stride=stride,padding=1)
        self.bn1 = nn.BatchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(ch_out,ch_out,kernel_size=3,stride=1,padding=1)
        self.bn2 = nn.BatchNorm2d(ch_out)

        self.extra = nn.Sequential()
        if ch_out != ch_in:
            self.extra = nn.Sequential(
                nn.Conv2d(ch_in,ch_out,kernel_size=1,stride=stride),
                nn.BatchNorm2d(ch_out)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        #[b, ch_in, h, w] = > [b, ch_out, h, w]
        out = self.extra(x) + out
        out = F.relu((out))
        return out

class ResNet18(nn.Module):
    def __init__(self,num_class):
        super(ResNet18, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(3,16,kernel_size=3,stride=3,padding=0),
            nn.BatchNorm2d(16)
        )
        # followed 4 blocks
        # [b, 16, h, w] => [b, 32, h ,w]
        self.blk1 = ResBlk(16, 32, stride=3)
        # [b, 32, h, w] => [b, 64, h, w]
        self.blk2 = ResBlk(32, 64, stride=3)
        # # [b, 64, h, w] => [b, 128, h, w]
        self.blk3 = ResBlk(64, 128, stride=2)
        # # [b, 128, h, w] => [b, 256, h, w]
        self.blk4 = ResBlk(128, 256, stride=2)

        # [b, 256, 7, 7]
        self.outlayer = nn.Linear(256*3*3,num_class)

    def forward(self,x):
        x = F.relu(self.conv1(x))

        x = self.blk1(x)
        x = self.blk2(x)
        x = self.blk3(x)
        x = self.blk4(x)

        print(x.shape)

        x = x.view(x.size(0), -1)
        x = self.outlayer(x)

        return x

def main():
    blk = ResBlk(64,128,stride=2)
    tmp = torch.randn(2,64,224,224)
    out = blk(tmp)
    print('block:',out.shape)
    model  = ResNet18(5)
    tmp = torch.randn(2,3,224,224)
    out = model(tmp)
    print('resnet:',out.shape)
    p = sum(map(lambda p:p.numel(), model.parameters()))
    print('parameters size:',p)

if __name__ == '__main__':
    main()

在这里插入图片描述
可视化损失函数和准确率:

import torch
from torch import optim, nn
import visdom
import torchvision
from torch.utils.data import DataLoader

from pokemon import Pokemon
from resnet import ResNet18

batchsz = 32
lr = 1e-3
epochs = 10

device = torch.device('cuda')
torch.manual_seed(1234)

train_db = Pokemon('pokemon', 224, mode='train')
val_db = Pokemon('pokemon', 224, mode='val')
test_db = Pokemon('pokemon', 224, mode='test')
train_loader = DataLoader(train_db, batch_size=batchsz, shuffle=True,
                          num_workers=4)
val_loader = DataLoader(val_db, batch_size=batchsz, num_workers=2)
test_loader = DataLoader(test_db, batch_size=batchsz, num_workers=2)

viz = visdom.Visdom()


def evalute(model, loader):
    model.eval()

    correct = 0
    total = len(loader.dataset)

    for x, y in loader:
        x, y = x.to(device), y.to(device)
        with torch.no_grad():
            logits = model(x)
            pred = logits.argmax(dim=1)
        correct += torch.eq(pred, y).sum().float().item()

    return correct / total


def main():
    model = ResNet18(5).to(device)
    optimizer = optim.Adam(model.parameters(), lr=lr)
    criteon = nn.CrossEntropyLoss()

    best_acc, best_epoch = 0, 0
    global_step = 0
    viz.line([0], [-1], win='loss', opts=dict(title='loss'))
    viz.line([0], [-1], win='val_acc', opts=dict(title='val_acc'))
    for epoch in range(epochs):

        for step, (x, y) in enumerate(train_loader):
            # x: [b, 3, 224, 224], y: [b]
            x, y = x.to(device), y.to(device)

            model.train()
            logits = model(x)
            loss = criteon(logits, y)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            viz.line([loss.item()], [global_step], win='loss', update='append')
            global_step += 1

        if epoch % 1 == 0:

            val_acc = evalute(model, val_loader)
            if val_acc > best_acc:
                best_epoch = epoch
                best_acc = val_acc

                torch.save(model.state_dict(), 'best.mdl')

                viz.line([val_acc], [global_step], win='val_acc', update='append')

    print('best acc:', best_acc, 'best epoch:', best_epoch)

    model.load_state_dict(torch.load('best.mdl'))
    print('loaded from ckpt!')

    test_acc = evalute(model, test_loader)
    print('test acc:', test_acc)


if __name__ == '__main__':
    main()

image-20230313215255967
image-20230313215248488

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值