自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(307)
  • 资源 (3)
  • 收藏
  • 关注

原创 llms 文本分类的微调

LLMS文本分类

2024-09-10 18:21:49 761

原创 目标检测的损失函数

目标检测的损失函数

2024-09-10 11:21:47 842

原创 在目标检测模型中使用正样本和负样本组成的损失函数。

在这种设置中,正样本(预测框A)用于计算主要的分类和定位损失,使得模型能够学习更好地预测目标的类别和位置。而负样本(预测框B和C)则用于计算分类损失,帮助模型不误检测不相关的框。这种方式通过优化正样本的损失,并在负样本中最小化不必要的影响,从而提升目标检测模型的整体性能。

2024-09-06 18:41:07 723

原创 Anchor Alignment Metric来优化目标检测的标签分配和损失函数。

通过这种方式,TaskAligned方法能够动态调整Anchor的标签分配,使得模型能够在训练过程中更加关注与真实目标对齐的Anchor,从而提升目标检测的性能。

2024-09-06 18:23:26 777

原创 【Focal Loss 本质】

focal loss

2024-09-06 17:17:07 327

原创 【大模型llms本质,并分析未来发展反向】

LLMS本质,和提升智能的方向

2024-09-03 15:52:27 639

原创 【github pull request贡献】

我们可以简单的将开源项目划分成两类,一类是给最终用户使用的项目;对于第二类项目,有可以分为几类:开发框架(各种Web MVC框架)、基础服务(MySQL、Message Queue)、可以被插件扩展的软件(FIrefox、Chrome)、编程语言(Ruby、Python、NodeJS)、模板引擎(SaSS、Less、HAML)等等。好的开源项目,通常会选择合理的目录结构,来组织自己的代码。而包(Package),则往往具有一定的可重用性。我们可以认为,一个模块,开源出去未必会有人来用。

2024-09-02 14:31:01 274

原创 【写提示最厉害的了:Prompt Poet 通过低代码简化了 Prompt Design 的过程】

全球最大的 AI 虚拟人物对话平台 Character.AI 开源了它们的 Prompt Design 项目—— Prompt Poet

2024-08-27 18:27:52 188

原创 小模型血战 phi3.5暂时胜出

小的LLMS血战

2024-08-27 18:22:25 311

原创 【比subulime还快的Zed,还有免费的AI code(Claude)】

Zed 又快有AI聪明的IDE

2024-08-27 16:21:20 439

原创 【ubuntu20.4 常用经验分享】

使用ubuntu作为常用系统的经验

2024-08-25 10:04:28 587

原创 【docker compose 部署和 go 热部署工具fresh】

文件配置得很全面,以下是一些注释如果你想启用热部署以便每次修改代码后自动重启 API 服务,可以使用fresh工具。下面是如何安装和配置fresh。

2024-08-23 11:31:04 496

原创 AI code 编程工具

AI CODE

2024-08-22 18:38:02 240

原创 开源:cuda studio云原生一站机器学习、深度学习、大模型AI平台

算力,标注,训练一站式平台

2024-08-22 18:20:31 270

原创 【LLM 应用开发框架,聊天机器人平台、开源选用】

LLM 应用开发框架,聊天机器人平台、开源选用

2024-08-22 17:56:12 581

原创 【3种 LangChain 替代品 LlamaIndex、FlowiseAI、Autochain】

LlamaIndex、FlowiseAI、Autochain

2024-08-22 16:32:22 250

原创 kubernetes中Pod很重要一个概念

Kubernetes重要概念Pod

2024-08-22 11:23:58 417

原创 通俗易懂 serverless 架构、微服务架构和云原生架构,并简单代码

微服务架构,云原生架构区别和kubernets

2024-08-22 11:21:48 759

原创 清华学者:知识图谱永远不会繁荣的五个原因

知识图片不会繁荣的5个原因

2024-08-21 18:30:29 275

原创 MinerU 是一款将PDF转化如markdown、json工具

一个开源的PDF提取工具

2024-08-21 17:56:59 455

原创 【头条的AI IDE MarsCode】

头条的AI IDE MarsCODE

2024-08-21 17:25:19 425

原创 【llama3中文版本】

llama3中文版本,包括部署,训练,微调,上下文扩充

2024-08-19 15:32:55 1070

原创 【llamaindex和GraphRAG】

LlamaIndex是一个利用大型语言模型(LLMs)构建具备情境增强功能的生成式人工智能应用程序的框架。数据连接器:从其原始来源和格式中导入现有数据,如 API、PDF、SQL 等。数据索引:以中间表示形式结构化数据,便于 LLM 高效使用。引擎查询引擎:用于问答的强大接口(例如,RAG 管道)。聊天引擎:用于与数据进行多轮“来回”互动的对话接口。智能体:由 LLM 驱动的知识工作者,通过工具增强,从简单的助手功能到 API 集成等。可观测性/评估集成。

2024-08-19 13:36:45 568

原创 【yolov8seg】

图示yolov8

2024-08-19 11:27:44 193

原创 【LLMS评估方法】

评估指令微调的大型语言模型(如聊天机器人)时,使用的一些方法:模型表现评价:模型评价的复杂性:模型评估的方法:

2024-08-19 10:44:04 138

原创 【sglang架构解读】

sglang最新最快的LLMS推理引擎架构和改造

2024-08-14 14:29:24 956

原创 vllms架构

vllms推理架构

2024-08-13 18:48:02 736

原创 【gpt生成文本的回复的原理和代码,通俗思路清晰】

GPT解码没有用beam search 就是基于采样

2024-08-13 15:39:38 191

原创 GPT损失和是模型模型是否真的学会(困惑度)。

gpt预测过程,损失,模型学得好不好的,困惑度

2024-08-12 20:22:37 892

原创 一文打通pytorch中几个常见的张量操作

几个张量操作区别和举例

2024-08-12 16:12:16 443

原创 【大模型训不用dropout的原因】

大模型训不用dropout

2024-08-12 15:44:06 616

原创 【激活函数gelu relu 原理和实现代码】

激活函数gelu relu

2024-08-12 14:23:20 282

原创 【层归一化用于单个样本适合于序列建模,通俗】

层归一化,简称LayerNorm,会将神经网络层的激活值规范到均值为0,并将其方差归一化为1。尤其是在循环神经网络(RNNs)和自注意力模型(如 Transformers)中。LayerNorm 会对输入样本分别归一化(下图中的行,水平箭头);使用dim=-1是在最后一个维度(特征维度)而不是行维度(样本数)上进行计算。

2024-08-09 20:28:53 692

原创 【用llms学英语单词的一个标准流程,一次深入掌握多个单词】

用llms学英语单词的一个标准流程,一次深入掌握多个单词

2024-08-09 14:31:24 338

原创 多头注意力用单元矩阵实现以及原因

MHA(多头注意力)共享矩阵和独立矩阵实现,为什么采用共享矩阵,并用实例说明

2024-08-09 11:37:59 1190

原创 【BM25和TFIDF比较 精华】

TF-IDF是一种简单的加权机制,通过词频和逆文档频率来衡量单词的重要性。BM25是一种更复杂的算法,通过引入非线性词频变换和文档长度归一化,提供了更精确的文档相关性评估,适合需要高精度检索结果的应用场景。在信息检索系统中,BM25主要用于排序阶段,即对已经召回的文档进行相关性评分和排序。然而,在召回阶段,BM25本身并不是直接使用的工具。召回阶段通常依赖于索引和搜索机制来获取一个初步的文档集合,然后再对这些文档使用BM25进行排序。BM25在信息检索系统中主要用于排序阶段。

2024-08-07 11:33:42 977

原创 selfAttention 中的dk到底是什么

selfAttention dk表示什么

2024-08-06 18:20:30 895

原创 模拟kaggle比赛过程

模拟kaggle比赛

2024-08-06 15:34:06 184

原创 基于whisper流式语音识别

用open ai 的whisper用于流式识别,当然只是一个简单的原理例子

2024-08-05 20:14:09 528

原创 【PCA提取主要特征通俗】

通过上述步骤,我们可以将原始数据投影到主要成分上,从而生成新的特征集合。这些新的特征保留了数据中的主要信息,同时简化了数据结构。假设我们已经通过PCA计算出了特征向量(主要成分),我们可以将原始数据投影到这些主要成分上。其中 (\mu) 是每个特征的均值,(\sigma) 是每个特征的标准差。:将原始数据投影到选定的主要成分上,得到新的特征集合。这样,我们就得到了新的特征集合(主成分)( Y )。:确保数据的每个特征都有均值为0,标准差为1。:选择前几个特征值最大的特征向量作为主要成分。

2024-08-05 17:46:48 983

数字图像处理(西安交通大学)

数字图像处理数字图像处理(西安交通大学)经典教材

2011-03-19

浅谈C#与matlab的混合编程

关于C#与Matlab联合开发 关于C#与Matlab联合开发 关于C#与Matlab联合开发

2011-03-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除