- 博客(307)
- 资源 (3)
- 收藏
- 关注
原创 在目标检测模型中使用正样本和负样本组成的损失函数。
在这种设置中,正样本(预测框A)用于计算主要的分类和定位损失,使得模型能够学习更好地预测目标的类别和位置。而负样本(预测框B和C)则用于计算分类损失,帮助模型不误检测不相关的框。这种方式通过优化正样本的损失,并在负样本中最小化不必要的影响,从而提升目标检测模型的整体性能。
2024-09-06 18:41:07 723
原创 Anchor Alignment Metric来优化目标检测的标签分配和损失函数。
通过这种方式,TaskAligned方法能够动态调整Anchor的标签分配,使得模型能够在训练过程中更加关注与真实目标对齐的Anchor,从而提升目标检测的性能。
2024-09-06 18:23:26 777
原创 【github pull request贡献】
我们可以简单的将开源项目划分成两类,一类是给最终用户使用的项目;对于第二类项目,有可以分为几类:开发框架(各种Web MVC框架)、基础服务(MySQL、Message Queue)、可以被插件扩展的软件(FIrefox、Chrome)、编程语言(Ruby、Python、NodeJS)、模板引擎(SaSS、Less、HAML)等等。好的开源项目,通常会选择合理的目录结构,来组织自己的代码。而包(Package),则往往具有一定的可重用性。我们可以认为,一个模块,开源出去未必会有人来用。
2024-09-02 14:31:01 274
原创 【写提示最厉害的了:Prompt Poet 通过低代码简化了 Prompt Design 的过程】
全球最大的 AI 虚拟人物对话平台 Character.AI 开源了它们的 Prompt Design 项目—— Prompt Poet
2024-08-27 18:27:52 188
原创 【docker compose 部署和 go 热部署工具fresh】
文件配置得很全面,以下是一些注释如果你想启用热部署以便每次修改代码后自动重启 API 服务,可以使用fresh工具。下面是如何安装和配置fresh。
2024-08-23 11:31:04 496
原创 【3种 LangChain 替代品 LlamaIndex、FlowiseAI、Autochain】
LlamaIndex、FlowiseAI、Autochain
2024-08-22 16:32:22 250
原创 【llamaindex和GraphRAG】
LlamaIndex是一个利用大型语言模型(LLMs)构建具备情境增强功能的生成式人工智能应用程序的框架。数据连接器:从其原始来源和格式中导入现有数据,如 API、PDF、SQL 等。数据索引:以中间表示形式结构化数据,便于 LLM 高效使用。引擎查询引擎:用于问答的强大接口(例如,RAG 管道)。聊天引擎:用于与数据进行多轮“来回”互动的对话接口。智能体:由 LLM 驱动的知识工作者,通过工具增强,从简单的助手功能到 API 集成等。可观测性/评估集成。
2024-08-19 13:36:45 568
原创 【层归一化用于单个样本适合于序列建模,通俗】
层归一化,简称LayerNorm,会将神经网络层的激活值规范到均值为0,并将其方差归一化为1。尤其是在循环神经网络(RNNs)和自注意力模型(如 Transformers)中。LayerNorm 会对输入样本分别归一化(下图中的行,水平箭头);使用dim=-1是在最后一个维度(特征维度)而不是行维度(样本数)上进行计算。
2024-08-09 20:28:53 692
原创 【BM25和TFIDF比较 精华】
TF-IDF是一种简单的加权机制,通过词频和逆文档频率来衡量单词的重要性。BM25是一种更复杂的算法,通过引入非线性词频变换和文档长度归一化,提供了更精确的文档相关性评估,适合需要高精度检索结果的应用场景。在信息检索系统中,BM25主要用于排序阶段,即对已经召回的文档进行相关性评分和排序。然而,在召回阶段,BM25本身并不是直接使用的工具。召回阶段通常依赖于索引和搜索机制来获取一个初步的文档集合,然后再对这些文档使用BM25进行排序。BM25在信息检索系统中主要用于排序阶段。
2024-08-07 11:33:42 977
原创 【PCA提取主要特征通俗】
通过上述步骤,我们可以将原始数据投影到主要成分上,从而生成新的特征集合。这些新的特征保留了数据中的主要信息,同时简化了数据结构。假设我们已经通过PCA计算出了特征向量(主要成分),我们可以将原始数据投影到这些主要成分上。其中 (\mu) 是每个特征的均值,(\sigma) 是每个特征的标准差。:将原始数据投影到选定的主要成分上,得到新的特征集合。这样,我们就得到了新的特征集合(主成分)( Y )。:确保数据的每个特征都有均值为0,标准差为1。:选择前几个特征值最大的特征向量作为主要成分。
2024-08-05 17:46:48 983
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人