【vllm多LORA部署】

要在使用 vllm serve 命令时调用特定的 LoRA 模块(如 lora1lora2),您需要在启动服务器时通过 --lora-modules 参数指定每个 LoRA 模块的名称和路径。以下是具体的步骤和示例:

  1. 启动 vLLM 服务器并启用 LoRA
    使用 vllm serve 命令启动服务器,并添加 --enable-lora 参数以启用 LoRA 支持。然后,使用 --lora-modules 参数指定每个 LoRA 模块的名称和路径。

    vllm serve meta-llama/Llama-2-7b-hf \
        --enable-lora \
        --lora-modules lora1=/path/to/lora1 lora2=/path/to/lora2
    

    请将 /path/to/lora1/path/to/lora2 替换为您的 LoRA 模块的实际路径。

  2. 通过 API 调用 LoRA 模块
    启动服务器后,您可以通过发送 API 请求来调用特定的 LoRA 模块。在请求中,您可以通过 model 参数指定要使用的 LoRA 模块。

    例如,如果您想要调用 lora1 模块,可以发送以下请求:

    curl http://localhost:8000/v1/completions \
        -H "Content-Type: application/json" \
        -d '{
            "model": "lora1",
            "prompt": "Your prompt here",
            "max_tokens": 50,
            "temperature": 0
        }' | jq
    

    同样地,如果您想要调用 lora2 模块,只需将 "model": "lora1" 替换为 "model": "lora2"

  3. 动态加载和卸载 LoRA 模块
    vLLM 服务器还支持在运行时动态加载和卸载 LoRA 模块。这可以通过专门的 API 端点实现。

    • 加载 LoRA 模块

      curl -X POST http://localhost:8000/v1/load_lora_adapter \
      -H "Content-Type: application/json" \
      -d '{
          "lora_name": "lora1",
          "lora_path": "/path/to/lora1"
      }'
      
    • 卸载 LoRA 模块

      curl -X POST http://localhost:8000/v1/unload_lora_adapter \
      -H "Content-Type: application/json" \
      -d '{
          "lora_name": "lora1"
      }'
      

这些步骤展示了如何在 vLLM 服务器中初始化和调用 LoRA 模块。您可以根据需要调整路径和参数,以适应您的具体应用场景。

多Lora部署注意的点

在这里插入图片描述

### 如何使用 Xinference 部署 LoRA 模型 Xinference 是一个用于简化大型语言模型部署和服务化的工具。为了实现 LoRA (Low-Rank Adaptation) 模型的高效部署,通常需要遵循特定的工作流程来准备环境并配置必要的参数。 #### 准备工作 安装所需依赖库之前,确保 Python 版本不低于 3.8,并且已经设置了虚拟环境以便管理项目中的包版本。接着通过 pip 安装最新版的 `xinference` 和其他支持 LoRA 的扩展组件: ```bash pip install xinference loralib transformers accelerate bitsandbytes ``` #### 加载预训练基础模型 加载预先训练好的 Transformer 架构作为基底,在此之上应用 LoRA 权重调整。这里假设使用 Hugging Face 上托管的一个流行的基础模型: ```python from transformers import AutoModelForCausalLM, AutoTokenizer base_model_name_or_path = "bigscience/bloomz-7b1" tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path) model = AutoModelForCausalLM.from_pretrained( base_model_name_or_path, torch_dtype=torch.float16, # 使用半精度浮点数减少内存占用 device_map="auto", # 自动分配到可用设备(CPU/GPU) ) ``` #### 应用 LoRA 修改 引入低秩适应机制对上述基础模型进行增强处理。这一步骤涉及到了解目标领域数据特点之后精心挑选出来的超参设置: ```python import peft config = peft.LoRAConfig(target_modules=["q_proj", "v_proj"], r=8, alpha=16) lora_adapter = peft.get_peft_model(model, config) # 如果已有保存过的 LoRA 参数文件,则可以直接加载它们 peft.PeftModel.from_pretrained(lora_adapter, "./path/to/lora_weights") ``` #### 启动 Xinference 接口服务 完成以上准备工作后,就可以利用 `xinference` 提供的功能快速启动 RESTful API 或 WebSocket Server 对外提供预测接口了: ```python from xinference.deploy import start_server start_server(app=model, tokenizer=tokenizer, port=8000) ``` 此时访问 http://localhost:8000 即可获取基于该 LoRA 调整后的 BLOOMZ 模型所提供的自然语言理解能力[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ai君臣

学会的就要教给人

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值