CNN与句子分类之动态池化方法DCNN--TensorFlow实现篇

本文介绍了基于TensorFlow实现的动态卷积神经网络(DCNN)在句子分类任务中的应用,详细阐述了数据处理、模型构建、模型训练过程,并分析了训练结果和过拟合问题。
摘要由CSDN通过智能技术生成

本文是paper“A Convolutional Neural Network for Modelling Sentences”基于TensorFlow的实现方法,代码和数据集都可以到我的github上面进行下载。

数据集及处理方法

本文仿真的是论文的第二个实验,使用的数据集是TREC。该数据集是QA领域用于分类问题类型的。其中问题主要分为6大类别,比如地理位置、人、数学信息等等,这里使用one-hot编码表明其类别关系。其包含5452个标记好的训练集和500个测试集。每个样本数据如下所示,以冒号分隔,前面标示类别,后面为问题:

NUM:date When did Hawaii become a state ?

接下来介绍数据处理函数,这部分写在dataUtils.py文件中。其实和之前写的也大都差不多,都是读取文件中的句子和标签、进行PADDING、构建vocabulary、将句子转换成单词索引以方便embedding层进行转化为词向量。代码入下,已经注释的很清楚,不再进行过多介绍。使用的时候直接调用load_data()函数即可。

def clean_str(string):
    string = re.sub(r"[^A-Za-z0-9:(),!?\'\`]", " ", string)
    string = re.sub(r" : ", ":", string)
    string = re.sub(r"\'s", " \'s", string)
    string = re.sub(r"\'ve", " \'ve", string)
    string = re.sub(r"n\'t", " n\'t", string)
    string = re.sub(r"\'re", " \'re", string)
    string = re.sub(r"\'d", " \'d", string)
    string = re.sub(r"\'ll", " \'ll", string)
    string = re.sub(r",", " , ", string)
    string = re.sub(r"!", " ! ", string)
    string = re.sub(r"\(", " \( ", string)
    string = re.sub(r"\)", " \) ", string)
    string = re.sub(r"\?", " \? ", string)
    string = re.sub(r"\s{2,}", " ", string)
    return string.strip().lower()

def load_data_and_labels():
    """
    Loads data from files, splits the data into words and generates labels.
    Returns split sentences and labels.
    """
    # Load data from files
    folder_prefix = 'data/'
    x_train = list(open(folder_prefix+"train").readlines())
    x_test = list(open(folder_prefix+"test").readlines())
    test_size = len(x_test)
    x_text = x_train + x_test

    x_text = [clean_str(sent) for sent in x_text]
    y = [s.split(' ')[0].split(':')[0] for s in x_text]
    x_text = [s.split(" ")[1:] for s in x_text]
    # Generate labels
    all_label = dict()
    for label in y:
        if not label in all_label:
            all_label[label] = len(all_label) + 1
    one_hot = np.identity(len(all_label))
    y = [one_hot[ all_label[label]-1 ] for label in y]
    return [x_text, y, test_size]

def pad_sentences(sentences, padding_word="<PAD/>"):
    """
    Pads all sentences to the same length. The length is defined by the longest sentence.
    Returns padded sentences.
    """
    sequence_length = max(len(x) for x in sentences)
    padded_sentences = []
    for i in range(len(sentences)):
        sentence = sentences[i]
        num_padding = sequence_length - len(sentence)
        new_sentence = sentence + [padding_word] * num_padding
        padded_sentences.append(new_sentence)
    return padded_sentences

def build_vocab
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值