Language Modeling with Gated Convolutional Networks(句子建模之门控CNN)--模型简介篇

本文介绍了Gated CNN如何引入门控机制缓解梯度传播问题,相较于LSTM,模型更简单,收敛速度更快。通过堆叠CNN捕获长文本的高层特征,门控机制(GLU)控制信息传递,减少非线性操作,促进模型训练。实验展示了在WikiText-103和GBW数据集上的优秀效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近忙着实验室的项目,一直没有时间做仿真,所以就先写一下之前看的一篇文章,总结一下吧。这次要说的是Gated CNN,这也是第一次将门限控制引入到CNN中的文章,感觉十分有新意,效果也很棒。下面我们来看一下,文章的主要贡献包括:

  1. 提出一种新的门控机制
  2. 缓解梯度传播,降低梯度弥散等现象
  3. 相比LSTM,模型更加简单,收敛速度更快
    模型的结构图如下所示:
    这里写图片描述
    首先我们可以通过堆叠CNN来标识长文本,提取更高层、更抽象的特征,而且相比LSTM而言,我们需要的op更少(CNN需要O(N/k)个op,而LSTM将文本视为序列需要O(N)个op,其中N为文本长度,k为卷积核宽度),这样一来,我们需要的非线性操作也更少,有效地降低了梯度弥散的现象,使模型收敛和训练变得更加简单。此外,LSTM中模型下一时刻的输出依赖于前一个时刻的隐藏层状态,无法实现模型并行化。但是,CNN无需这种依赖,可以方便的实现并行化,从而实现计算速度的提升。最后,本文中提出的线性门控单元不仅有效地降低了梯度弥散,而且还保留了非线性的能力。接下来我们看一下模型的具体实现方法:
    从上图可以看出,其主要结构跟原始
### GLU门机制的工作原理 GLU(Gated Linear Unit)是一种带门机制的网络结构,最初提出于2016年的论文《Language Modeling with Gated Convolutional Networks》中[^1]。其核心思想是通过引入门机制来制信息流的比例,从而使模型能够自适应地选择哪些输入特征对当前任务更重要。 #### 工作原理 GLU 的基本公式定义如下: \[ y = A \odot \sigma(B) \] 其中: - \(A\) 和 \(B\) 是由输入经过不同的线性变换得到的结果; - \(\odot\) 表示按元素相乘(即哈达玛积); - \(\sigma\) 是 Sigmoid 激活函数,用于生成门信号。 具体来说,\(A\) 可以看作未加权的信息流,而 \(B\) 经过 Sigmoid 函数后生成一个权重矩阵,表示每个位置上允许多少比例的信息通过。这种设计使得 GLU 能够动态调整不同部分的重要性,类似于 LSTM 中的遗忘门和输入门的作用。 #### 实现方式 在实际应用中,GLU 通常作为卷积层或其他全连接层的一部分被集成到神经网络架构中。例如,在语言建模任务中,可以通过以下步骤实现 GLU: ```python import torch import torch.nn as nn class GLU(nn.Module): def __init__(self, input_dim, output_dim): super(GLU, self).__init__() self.linear_a = nn.Linear(input_dim, output_dim) self.linear_b = nn.Linear(input_dim, output_dim) def forward(self, x): a = self.linear_a(x) b = torch.sigmoid(self.linear_b(x)) return a * b ``` 上述代码展示了如何构建一个简单的 GLU 层。`linear_a` 和 `linear_b` 分别对应公式中的 \(A\) 和 \(B\) 部分,最后通过 Hadamard 积完成门操作。 --- ### 应用场景 GLU 主要应用于自然语言处理领域以及涉及序列数据的任务中。以下是几个典型的应用场景: 1. **语言建模** 在语言建模任务中,GLU 结合卷积神经网络(CNN),可以高效捕捉局部上下文关系并减少计算复杂度。相比于 RNN 或 Transformer,GLU 提供了一种轻量级的选择。 2. **机器翻译** 对于需要精确制信息流动的机器翻译任务,GLU 的门特性有助于筛选重要词语及其对应的语义特征。 3. **语音识别** 类似于文本数据,音频信号也可以视为一种时间序列数据。因此,GLU 同样适用于端到端的自动语音识别系统中[^4]。 尽管 ReLU 等激活函数解决了传统 sigmoid 激活函数带来的梯度消失问题[^2],但在某些特定情况下,GLU 所具备的显式门功能仍然展现出独特的优势。 --- ### §相关问题§ 1. 如何比较 GLU 与 LSTM/GRU 的性能差异? 2. GLU 是否可以在视觉任务中替代 CNN 使用?如果有成功案例,请举例说明。 3. SwiGLU 作为一种改进版 GLU,主要优化了哪些方面? 4. 在大规模预训练模型中,GLU 的使用频率为何逐渐增加? 5. 如果将 GLU 引入强化学习框架下,可能会带来哪些潜在好处?
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值