1002. A+B for Polynomials (25)-PAT甲级真题

本文介绍了一种计算两个多项式相加的方法。通过使用数组记录每个指数对应的系数,并累计非零系数的数量,在输出时按指数从高到低的顺序输出所有非零项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

This time, you are supposed to find A+B where A and B are two polynomials.

Input

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 … NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, …, K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10,0 <= NK < … < N2 < N1 <=1000.

Output

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.

Sample Input

2 1 2.4 0 3.2
2 2 1.5 1 0.5

Sample Output

3 2 1.5 1 2.9 0 3.2

题目大意:计算多项式A+B的和~

分析:设立c数组,长度为指数的最大值,c[i] = j表示指数i的系数为j,接收a和b输入的同时将对应指数的系数加入到c中,累计c中所有非零系数的个数,然后从前往后输出所有系数不为0的指数和系数~

#include <iostream>
using namespace std;
int main() {
    float c[1001] = {0};
    int m, n, t;
    float num;
    scanf("%d", &m);
    for (int i = 0; i < m; i++) {
        scanf("%d%f", &t, &num);
        c[t] += num;
    }
    scanf("%d", &n);
    for (int i = 0; i < n; i++) {
        scanf("%d%f", &t, &num);
        c[t] += num;
    }
    int cnt = 0;
    for (int i = 0; i < 1001; i++) {
        if (c[i] != 0) cnt++;
    }
    printf("%d", cnt);
    for (int i = 1000; i >= 0; i--) {
        if (c[i] != 0.0)
            printf(" %d %.1f", i, c[i]);
    }
    return 0;
}

1002 A+B for Polynomials 是一道编程题目,通常是在考察Java中处理多项式加法的问题。在这个问题中,你需要编写一个程序,让用户输入两个多项式的系数(如a_n*x^n + a_{n-1}*x^{n-1} + ... + a_1*x + a_0的形式),然后计算它们的和,并按照同样的形式表示出来。 在Java中,你可以创建一个`Polynomial`类,包含一个数组来存储系数和最高次数的信息。用户输入的每个多项式可以被解析成这样的结构,然后通过遍历并累加系数来完成加法操作。最后,将结果转换回字符串形式展示给用户。 以下是简化版的代码示例: ```java class Polynomial { int[] coefficients; int degree; // 构造函数,初始化数组 public Polynomial(int[] coeffs) { coefficients = coeffs; degree = coefficients.length - 1; } // 加法方法 Polynomial add(Polynomial other) { Polynomial result = new Polynomial(new int[coefficients.length + other.coefficients.length]); for (int i = 0; i < coefficients.length; ++i) { result.coefficients[i] += coefficients[i]; } for (int i = 0; i < other.coefficients.length; ++i) { result.coefficients[i + coefficients.length] += other.coefficients[i]; } result.degree = Math.max(degree, other.degree); return result; } @Override public String toString() { StringBuilder sb = new StringBuilder(); if (degree >= 0) { for (int i = degree; i >= 0; --i) { sb.append(coefficients[i]).append('*x^').append(i).append(" + "); } // 移除最后一个 " + " sb.setLength(sb.length() - 2); } else { sb.append("0"); } return sb.toString(); } } // 主函数示例 public static void main(String[] args) { Polynomial poly1 = new Polynomial(...); // 用户输入第一个多项式的系数 Polynomial poly2 = new Polynomial(...); // 用户输入第二个多项式的系数 Polynomial sum = poly1.add(poly2); System.out.println("Result: " + sum); } ```
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值