二分查找

二分法常见有两个模板:
这个是划分区间为[l,mid]和[mid+1,r]两个部分。

int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = (l + r) / 2;
        if (check(mid)) r = mid;   
        else l = mid + 1;
    }
    return l;
}

这个模板再对取mid时用直接除二,这就会出现1,4的mid值为2。
—————————分割线——————————
我们再来看另一个模板。
[l, r]被划分成[l, mid - 1]和[mid, r]

int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = (l + r) / 2;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

这个模板用的是+1处理,这样的话,1和4的mid值就是3。
————————分割线——————————
经典例题走一道,感受这两者的区别
给定一个按照升序排列的长度为n的整数数组,以及 q 个查询。

对于每个查询,返回一个元素k的起始位置和终止位置(位置从0开始计数)。

如果数组中不存在该元素,则返回“-1 -1”。

输入格式
第一行包含整数n和q,表示数组长度和询问个数。

第二行包含n个整数(均在1~10000范围内),表示完整数组。

接下来q行,每行包含一个整数k,表示一个询问元素。

输出格式
共q行,每行包含两个整数,表示所求元素的起始位置和终止位置。

如果数组中不存在该元素,则返回“-1 -1”。

数据范围
1≤n≤100000
1≤q≤10000
1≤k≤10000
输入样例:
6 3
1 2 2 3 3 4
3
4
5
输出样例:
3 4
5 5
-1 -1

#include<iostream>
#include<cstdio>
using namespace std;
int main()
{
	int a[100010];
	int n,q;
	cin>>n>>q;
	for(int i=0;i<n;i++){
		scanf("%d",&a[i]);
	}
	while(q--){
		int ask;
		cin>>ask;
		int l=0,r=n-1;
		while(l<r){
			int mid=(l+r)/2;
			if(a[mid]>=ask)r=mid;
			else l=mid+1;
		}
		int ans1=a[r];
		if(a[r]!=ask){//模板一找符合条件的数列当中的最小值
			printf("-1 -1\n");
			continue;
		}
		int ans2=r;
		int l1=0,r1=n-1;
		while(l1<r1){//模板二找符合条件的数列中的最大值
			int mid=(l1+r1+1)/2;
			if(a[mid]<=ask)l1=mid;
			else r1=mid-1;
		}
		int ans=r1;
		printf("%d %d\n",ans2,ans);
	}
	return 0;
}

————————分割线——————————
悲夫!
模板有限,例题无穷。

接下来,我将对两个模板进行分四部分总结,包括查找和答案,不断更新。
ps:
如果没有这个值会返回什么?(可爱的小问号)
前者会返回和真实值最接近的小的值,
后者会返回和真是值最接近的大的值。
PS:在使用任何一个模板的时候,在check函数中都要写等于,这个是重点:
通过写这两个模板:最终的结果就是mid值不是标准值,mid值通过最后一次判断使判断非法,从而达到r-1,l+1,的效果最终mid值并不是合法的,合法的是l和r。
return code;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值