Java面试 Day2 - 二叉树的遍历

今天我们就来了解一下二叉树的经典面试题:

已知二叉树的前序遍历顺序为ABCDEGHF,中序遍历顺序为DBAGEHCF,求该二叉树的后序遍历。

还有:

已知二叉树的中序遍历顺序为DBAGEHCF,后序遍历顺序为DBGHEFCA,求该二叉树的前序遍历。

类似的面试题应该如何应对呢?

什么是二叉树?

在开始之前,容我再唠叨几句:什么是二叉树?二叉树(Binary Tree)是一种特殊的树,树上的每个结点最多有两个子树的树结构,也就是说每一个父结点最多长出两个树杈。通常两个子结点被称为左子结点和右子结点。比如:

ca998d3271e4620ac33e145b399e8bf1.png

其中,A就是整个二叉树的根结点,那么B就是A的左子结点,C就是A的右子结点。每一个结点,我们可以用Java语言这样实现:

/*** 二叉树结点*/
public class TreeNode {    
	public char value;    
	/**    * 左子树    */    
	public TreeNode left;    
	/**    * 右子树    */    
	public TreeNode right;
}

三种遍历方式

在解题之前,先把先序遍历、中序遍历、后序遍历这三种遍历方式说清楚,为之后的解题打下良好的基础。

先序遍历

先序遍历就是,先访问结点,再访问子结点,再访问右子结点。上图二叉树的先序遍历的顺序就是ABCDEGHF。我们可以用Java语言这样实现:

public void preOrder(TreeNode biTree) {    
    System.out.println(biTree.value);    
    if(biTree.left != null) {        
        preOrder(biTree.left);    
    }    
    if(biTree.right != null) {
        preOrder(biTree.right);    
    }
}
中序遍历

先序遍历就是,先访问子结点,再访问结点,再访问子结点。上图二叉树的中序遍历的顺序就是DBAGEHCF。我们可以用Java语言这样实现:

public void preOrder(TreeNode biTree) {    
    if(biTree.left != null) {        
        preOrder(biTree.left);    
    }    
    System.out.println(biTree.value);    
    if(biTree.right != null) {
        preOrder(biTree.right);
    }
}
后序遍历

先序遍历就是,先访问子结点,再访问子结点,再访问结点。上图二叉树的后序遍历的顺序就是DBGHEFCA。我们可以用Java语言这样实现:

public void preOrder(TreeNode biTree) {
    if(biTree.left != null) {
    	preOrder(biTree.left);
    }    
    System.out.println(biTree.value);
    if(biTree.right != null) {
    	preOrder(biTree.right);
    }
}

经过上面的叙述,可以总结出:先序遍历、中序遍历、后序遍历三种遍历中的“先”、“中”、“后”都是指根结点的访问顺序,“先”则是先访问根结点,“中”则是在左右中间访问根结点,,“后”则是最后访问根结点。

已知前中序遍历顺序,求后序遍历顺序

扯了这么多,还是回到刚刚的第一道面试题上:

已知二叉树的前序遍历顺序为ABCDEGHF,中序遍历顺序为DBAGEHCF,求该二叉树的后序遍历。

我们的解题思路是,先根据前中序遍历顺序重新构造出这个二叉树,再根据二叉树写出后序遍历顺序。

重构二叉树

前序遍历(ABCDEGHF)中的第一个结点A肯定为根结点,那么在中序遍历(DBAGEHCF)中,A结点的左边(DB)肯定为结点A的左子树,A结点的右边(GEHCF)肯定为结点A的右子树,初步判断二叉树是这样的:

2f59a36f7ea0dee33dc7863eab4f6216.png

再看A的左子树(DB),在前序遍历(ABCDEGHF)中,B在最前面,说明B为该子树的根结点,再看中序遍历(DBAGEHCF),B的左边(D)肯定为A的左子树,B的右边(无)肯定为A的右子树,初步判断二叉树是这样的:

732a1c454127b2dde5320c9d51d42093.png

再看A的右子树(GEHCF),在前序遍历(ABCDEGHF)中,C在最前面,说明C为该子树的根结点,再看中序遍历(DBAGEHCF),C的左边(GEH)肯定为C的左子树,C的右边(F)肯定为C的右子树,初步判断二叉树是这样的:

314e839a3a45c6979faa0a2cc9d75fc9.png

再看C的左子树(GEH),在前序遍历(ABCDEGHF)中,E在最前面,说明E为该子树的根结点,再看中序遍历(DBAGEHCF),E的左边(G)肯定为E的左子树,E的右边(H)肯定为E的右子树,可以最终判断出二叉树是这样的:

ca998d3271e4620ac33e145b399e8bf1.png

写出后序遍历顺序

这个步骤就比较容易了,根据二叉树得到的后序遍历顺序就是:DBGHEFCA

已知中后序遍历顺序,求前序遍历顺序

扯了这么多,还是回到刚刚的第一道面试题上:

已知二叉树的中序遍历顺序为DBAGEHCF,后序遍历顺序为DBGHEFCA,求该二叉树的前序遍历。

我们的解题思路是,先根据中后序遍历顺序重新构造出这个二叉树,再根据二叉树写出前序遍历顺序。

重构二叉树

后序遍历(DBGHEFCA)中的最后一个结点A肯定为根结点,那么在中序遍历(DBAGEHCF)中,A结点的左边(DB)肯定为结点A的左子树,A结点的右边(GEHCF)肯定为结点A的右子树,初步判断二叉树是这样的:

2f59a36f7ea0dee33dc7863eab4f6216.png

再看A的左子树(DB),在后序遍历(DBGHEFCA)中,B在最后面,说明B为该子树的根结点,再看中序遍历(DBAGEHCF),B的左边(D)肯定为A的左子树,B的右边(无)肯定为A的右子树,初步判断二叉树是这样的:

732a1c454127b2dde5320c9d51d42093.png

再看A的右子树(GEHCF),在后序遍历(DBGHEFCA)中,C在最后面,说明C为该子树的根结点,再看中序遍历(DBAGEHCF),C的左边(GEH)肯定为C的左子树,C的右边(F)肯定为C的右子树,初步判断二叉树是这样的:

314e839a3a45c6979faa0a2cc9d75fc9.png

再看C的左子树(GEH),在后序遍历(DBGHEFCA)中,E在最后面,说明E为该子树的根结点,再看中序遍历(DBAGEHCF),E的左边(G)肯定为E的左子树,E的右边(H)肯定为E的右子树,可以最终判断出二叉树是这样的:

ca998d3271e4620ac33e145b399e8bf1.png

写出后序遍历顺序

这个步骤就比较容易了,根据二叉树得到的前序遍历顺序就是:ABCDEGHF

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值