svm惩罚因子c的理解

知乎用户@顾凌峰

使用的hinge损失函数来表示对于样本的分类偏差, l o s s = m a x ( 0 , 1 − y ( w T x + b ) ) loss=max(0,1-y(w^Tx+b)) loss=max(0,1y(wTx+b)),引入松弛变量把优化问题写为:
min ⁡ w , b , ξ 1 2 ∥ w ∥ 2 + C ∑ i = 1 n ξ i s . t . y i ( w T x i + b ) ⩾ 1 − ξ i ξ i ⩾ 0 i = 1 , 2 , ⋯   , N \begin{aligned} \min_{w,b,\xi} \quad & \frac{1}{2}\parallel w \parallel^2 + C\sum_{i=1}^n \xi_i \\ s.t. \quad &y_i(w^Tx_i+b) \geqslant 1-\xi_i\\ \quad &\xi_i \geqslant 0\\ \quad & i=1,2,\cdots,N \end{aligned} w,b,ξmins.t.21w2+Ci=1nξiyi(wTxi+b)1ξiξi0i=1,2,,N

这里的 ξ i \xi_i ξi 就是对于第 i i i个样本点的分类损失,如果分类正确则是0,如果分类有所偏差则对应一个线性的值, ∑ i = 1 n ξ i \sum_{i=1}^n \xi_i i=1nξi是总误差,我们优化的目标当然是这个值越小越好,越小代表对训练集的分类越精准。目标函数中的另一项 ∥ w ∥ 2 \parallel w \parallel^2 w2(常数1/2是为了方便求导加上去的)的最小化的优化方向则是使间隔大小 1 ∥ w ∥ \frac{1}{\parallel w \parallel} w1最大。

原则上C可以根据需要选择所有大于0的数。C越大表示整个优化过程中对于总误差 ∑ i = 1 n ξ i \sum_{i=1}^n \xi_i i=1nξi的关注程度越高,对于减小误差的要求越高,甚至不惜使间隔减小。

  • 当C趋于无穷大时,这个问题也就是不允许出现分类误差的样本存在,那这就是一个hard-margin SVM问题
  • 当C趋于0时,我们不再关注分类是否正确,只要求间隔越大越好,那么我们将无法得到有意义的解且算法不会收敛

作者:顾凌峰
链接:https://www.zhihu.com/question/40217487/answer/85530960
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

参考:https://www.zhihu.com/question/40217487?sort=created

 

从优化的角度:

我们只关注原问题,因为原问题比对偶问题更直观一些。并且把约束条件直接放到目标函数中,即

min ⁡ w , b 1 2 ∥ w ∥ 2 + C ∑ i = 1 n l [ y i ( w T x i + b ) − 1 ] \min_{w,b} \frac{1}{2}\parallel w \parallel^2 + C\sum_{i=1}^n l[y_i(w^Tx_i+b)-1] w,bmin21w2+Ci=1nl[yi(wTxi+b)1]

这里的 l ( ⋅ ) l(\cdot) l()是一个损失函数loss function,表示不满足hard margin时造成的损失,最常见的就是hinge loss,即 l ( z ) = m a x ( 0 , 1 − z ) l(z)=max(0,1-z) l(z)=max(0,1z)
C > 0 C>0 C>0可以认为是一个罚参数,表示对后面一项的惩罚程度。理解这种问题的一个通用思路就是试试看在极端值会发生什么。

  • 当C=0时, C ∑ i l [ y i ( w T x i + b ) − 1 ] C\sum_i l[y_i(w^Tx_i+b)-1] Cil[yi(wTxi+b)1]直接忽略,也就是说不论分离超平面位置在哪里,都不会对目标函数造成损失,问题就变为 min ⁡ 1 2 ∥ w ∥ 2 \min \frac{1}{2}\parallel w \parallel^2 min21w2,那么他的解就是 w = 0 w=0 w=0
  • 当C=inf(无穷大)时,损失函数即使只增加一点点,都会导致目标函数值变为正无穷,也就硬性要求 l [ y i ( w T x i + b ) − 1 ] l[y_i(w^Tx_i+b)-1] l[yi(wTxi+b)1],此时问题等价于hard margin,如果线性不可分,也就无可行解了。
  • 如果不这么极端,C只是充分大,那么就要求loss function尽可能的小,即尽最大可能满足hard margin约束,这就会导致过拟合。

作者:Zhang Yao

链接:https://www.zhihu.com/question/40217487/answer/93344182

来源:知乎

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 

C是调节间隔与准确率的因子,C值越大,越不愿放弃那些离群点;c值越小,越不重视那些离群点。

  • 当C趋于无穷大时,这个问题也就是不允许出现分类误差的样本存在,那这就是一个hard-margin SVM问题(过拟合)

  • 当C趋于0时,我们不再关注分类是否正确,只要求间隔越大越好,那么我们将无法得到有意义的解且算法不会收敛。(欠拟合)

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值