6.机器学习—机器学习中惩罚系数原理讲解

一·摘要

在这里插入图片描述

在机器学习中,惩罚系数是一个至关重要的超参数,它通过正则化机制来防止模型对训练数据过度拟合,从而提升模型在新、未见过的数据上的泛化性能。正则化过程涉及在损失函数中添加一个额外的项,这个项与模型参数的大小有关,并且由惩罚系数λ控制。这个额外的成本项旨在抑制过大的参数值,因为过大的参数值往往会导致模型过于复杂,从而增加过拟合的风险。

二·个人简介

🏘️🏘️个人主页:以山河作礼
🎖️🎖️:Python领域新星创作者,CSDN实力新星认证,CSDN内容合伙人,阿里云社区专家博主,新星计划导师,在职数据分析师。

💕💕悲索之人烈焰加身,堕落者不可饶恕。永恒燃烧的羽翼,带我脱离凡间的沉沦。

在这里插入图片描述

🐘 希望大家能持续支持,共同向前迈进!😁
如果您觉得文章有价值,
欢迎留言💬,点赞👍,收藏🔖并关注我们➕🤝。
🪐💫💫💫💫💫💫💫热门专栏💫💫💫💫💫💫💫🪐
类型专栏
Python基础Python基础入门—详解版
Python进阶Python基础入门—模块版
Python高级Python网络爬虫从入门到精通🔥🔥🔥
Web全栈开发Django基础入门
Web全栈开发HTML与CSS基础入门
Web全栈开发JavaScript基础入门
Python数据分析Python数据分析项目🔥🔥
机器学习机器学习算法🔥🔥
人工智能人工智能

三·惩罚系数概念

在机器学习中,惩罚系数是一个至关重要的超参数,它通过正则化机制来防止模型对训练数据过度拟合,从而提升模型在新、未见过的数据上的泛化性能。正则化过程涉及在损失函数中添加一个额外的项,这个项与模型参数的大小有关,并且由惩罚系数λ控制。这个额外的成本项旨在抑制过大的参数值,因为过大的参数值往往会导致模型过于复杂,从而增加过拟合的风险。

L1和L2正则化是最常见的正则化形式。L1正则化倾向于推动模型参数中的一些变成零,产生稀疏解,这对于特征选择很有帮助。而L2正则化则倾向于让参数值均匀地接近零,但不会完全为零,这有助于确保模型的所有部分都有一定的贡献,而不是依赖于少数几个特征。

选择合适的惩罚系数非常关键,因为它直接影响到模型的泛化能力。如果惩罚系数太大,模型可能会因过于简单而欠拟合;如果太小,又可能会因过于复杂而过拟合。因此,通过交叉验证等技术来选择最佳的λ值是很重要的。

在多种机器学习算法中,包括线性回归、逻辑回归、岭回归、LASSO回归以及支持向量机等,都可以看到惩罚系数的应用。引入了惩罚系数后,模型的训练就变成了一个带约束的优化问题,需要使用特定的优化算法来解决,比如梯度下降法或坐标下降法。

四·原理

惩罚系数的原理是将约束优化问题转化为无约束优化问题来求解。这是通过在目标函数中加入一个与约束条件相关的惩罚项来实现的,这个惩罚项通常与被违反的约束条件的程度成比例。当迭代点不满足约束条件时,该方法会对目标函数的值施加一个很大的惩罚,迫使迭代点靠近或保持在可行域内。这样,随着惩罚系数的增加,无约束问题的解逐渐趋近于原约束问题的解。

  1. 外点法和内点法:惩罚函数法分为外点法和内点法。外点法适用于等式和不等式混合的约束,可以从定义域内的任意点开始,将问题真正转化为无约束问题。而内点法要求初始点必须位于可行域内部,并且只适用于不等式约束。内点法的主要思想是从可行域内部出发,并在可行域内部进行搜索。
  2. 构造惩罚项:对于含有等式约束的问题,可以构造一个包含惩罚项的辅助函数,并求该函数的最小值。其中,惩罚项由一个很大的正数(惩罚因子)和违反约束程度的乘积构成。当迭代点满足约束条件时,不施加惩罚;否则,通过增加目标函数值的方式施加惩罚。
  3. SUMT方法:即序列无约束极小化技术,是一种实现惩罚函数法的具体计算过程。它涉及构造一系列的无约束问题,通过逐步增加罚因子来求解这一系列问题,最终得到约束问题的解。
  4. 乘子法:是另一种处理约束优化问题的方法,它通过增广拉格朗日函数来引入约束,其中的参数不需要趋向无穷大就能求得最优解,因此可以避免罚函数可能出现的病态行为。
  5. 理论支持:为了确保算法的有效性,存在一系列引理和定理来证明在一定条件下,通过这种转化得到的无约束问题的解会收敛到原约束问题的最优解。

五·作用

惩罚系数的作用体现在以下几个方面:

  • 防止过拟合:通过引入惩罚系数,机器学习模型在训练时会被鼓励选择较为简单的模型参数,从而避免模型对训练数据过度拟合。
  • 平衡拟合与泛化:惩罚系数帮助模型在拟合训练数据和保持良好泛化能力之间找到合适的平衡点,以期在未知数据上也能表现良好。
  • 控制模型复杂度:较大的惩罚系数会限制模型参数的大小,降低模型复杂度;而较小的惩罚系数则允许模型有更多的自由度来学习数据的复杂结构。
  • 优化问题的转换:在优化问题中,惩罚系数用于将有约束的优化问题转换为无约束问题,使得问题更易于求解。
  • 调整损失函数:在某些算法中,如支持向量机(SVM),惩罚系数C可以看作是对违反硬间隔的损失函数(如hinge loss)的惩罚程度。当C值较大时,模型会更加强调正确分类的重要性,可能导致过拟合;而C值较小时,模型可能会忽视一些错分的情况,可能导致欠拟合。

六·详细讲解

惩罚系数是调节模型好坏的关键参数
下图展示了惩罚系数 对各个自变量(特征)的权重系数 的影响, 轴为惩罚系数 , 轴为权重系数 ,每一个
颜色表示一个自变量的权重系数
当 越大时(向左移动),惩罚项的影响也越大,会使每个自变量的权重系数趋近于零
当 越小时(向右移动),惩罚项的影响也越小,会使每个自变量的权重系数幅度变大
在这里插入图片描述
在这里插入图片描述
可以看到当 λ 越大时( λ 向左移动),惩罚项占据主导地位,会使得每个自变量的权重系数趋近于零,而当 λ 越小时( λ 向右移动),惩罚项的影响越来越小,会导致每个自变量的权重系数震荡的幅度变大。在实际应用中需要多次调整不同的 λ 值来找到一个合适的模型使得最后的效果最好。

  • 28
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 11
    评论
梯度下降算法是机器学习一种广泛应用的最优化算法,其主要目的是通过迭代找到目标函数的最小值,或者收敛到最小值。梯度下降算法的原理可以从一个下山的场景开始理解。算法的基本思想是沿着目标函数梯度的方向更新参数值,以期望达到目标函数的最小值。 在机器学习,梯度下降算法常常用于求解损失函数的最小值。在简单的线性回归,我们可以使用最小二乘法来求解损失函数的最小值。然而,在绝大多数情况下,损失函数是非线性的且复杂。因此,梯度下降算法在机器学习领域得到了广泛的应用。实际上,许多优秀的算法都是在梯度下降算法的启发下诞生的,例如AdaGrad、RMSProp、Momentum等等。 梯度下降算法的核心思想是通过计算目标函数的梯度来确定参数更新的方向。梯度表示了函数在某一点上的变化率,沿着梯度的方向可以使函数值快速减小。因此,梯度下降算法沿着梯度的反方向更新参数值,朝着目标函数的最小值靠近。算法的迭代过程会持续更新参数值,直到收敛到最小值或达到停止条件。 在实际应用,为了提高算法的效率和准确性,通常会对梯度下降算法进行改进和优化。例如,可以使用学习率来控制参数值的更新步长,或者采用批量梯度下降来同时计算多个样本的梯度。这些改进可以帮助算法更快地收敛并找到更好的解。 总之,梯度下降算法是一种重要的最优化算法,在机器学习被广泛应用。其原理是通过计算目标函数的梯度来更新参数值,以期望达到最小值。通过迭代的方式,梯度下降算法可以找到目标函数的最优解或者接近最优解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

以山河作礼。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值