【深度学习笔记】各种卷积方式串讲

本文详细梳理了深度学习中卷积的各种方式,包括常规卷积、1x1卷积、分组卷积、可分离卷积(空间可分离和深度可分离)、转置卷积、空洞卷积和子像素卷积。每种卷积方式的特点、作用和应用场景进行了阐述,旨在理解和体会大牛们的创新思维。
摘要由CSDN通过智能技术生成

问题

CNN 从 2012 年的 AlexNet 发展至今,各种网络结构层出不穷,尝试了几乎所有可能性的结构搭配以试图找到效果更好的那种,再通过结果去解释过程,这大概就是做深度学习的人的无奈之处吧,每天都有新论文发出,每天都会有新的网络结果,每个都比之前的提升一丢丢,琳琅满目,令人眼花缭乱,像我这样的便迷失其中,找不到一个确定的方向去研究,终究普普通通,无所建树。

网络结构如此,卷积 (Convolution) 方式也不例外,各种可能性的卷积过程改变方式都出现了(以后大概还有出现新的卷积方式的),效果各异,特点不同,所以想通过这篇文章将各种卷积方式捋一捋,体会下大牛们的智慧!

符号约定

输入 H i n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

manylinux

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值