问题
CNN 从 2012 年的 AlexNet 发展至今,各种网络结构层出不穷,尝试了几乎所有可能性的结构搭配以试图找到效果更好的那种,再通过结果去解释过程,这大概就是做深度学习的人的无奈之处吧,每天都有新论文发出,每天都会有新的网络结果,每个都比之前的提升一丢丢,琳琅满目,令人眼花缭乱,像我这样的便迷失其中,找不到一个确定的方向去研究,终究普普通通,无所建树。
网络结构如此,卷积 (Convolution) 方式也不例外,各种可能性的卷积过程改变方式都出现了(以后大概还有出现新的卷积方式的),效果各异,特点不同,所以想通过这篇文章将各种卷积方式捋一捋,体会下大牛们的智慧!
符号约定
输入: H i n