0037算法笔记——【分支限界法】最大团问题

这篇博客介绍了如何利用分支限界法解决无向图的最大团问题。最大团是指图中连接最紧密的顶点集合,而算法通过建立解空间树并采用优先队列来逐步扩展节点,寻找最优解。文章还探讨了最大团与其补图最大独立集之间的关系,并提供了一个算法的具体实现概述。
摘要由CSDN通过智能技术生成

        问题描述

     给定无向图G=(V, E),其中V是非空集合,称为顶点集;E是V中元素构成的无序二元组的集合,称为边集,无向图中的边均是顶点的无序对,无序对常用圆括号“( )”表示。如果U∈V,且对任意两个顶点u,v∈U有(u, v)∈E,则称U是G的完全子图(完全图G就是指图G的每个顶点之间都有连边)G的完全子图U是G的团当且仅当U不包含在G的更大的完全子图中。G的最大团是指G中所含顶点数最多的团

     如果U∈V且对任意u,v∈U有(u, v)不属于E,则称U是G的空子图。G的空子图U是G的独立集当且仅当U不包含在G的更大的空子图中。G的最大独立集是G中所含顶点数最多的独立集

     对于任一无向图G=(V, E),其补图G'=(V', E')定义为:V'=V,且(u, v)∈E'当且仅当(u, v)∈E。
     如果U是G的完全子图,则它也是G'的空子图,反之亦然。因此,G的团与G'的独立集之间存在一一对应的关系。特殊地,U是G的最大团当且仅当U是G'的最大独立集。

     例:如图所示,给定无向图G={V, E},其中V={1,2,3,4,5},E={(1,2), (1,4), (1,5),(2,3), (2,5), (3,5), (4,5)}。根据最大团(MCP)定义,子集{1,2}是图G的一个大小为2的完全子图,但不是一个团,因为它包含于G的更大的完全子图{1,2,5}之中。{1,2,5}是G的一个最大团。{1,4,5}和{2,3,5}也是G的最大团。右侧

好的,我可以为你介绍一下分支限界法和装载问题的相关内容。 分支限界法是一种求解最优化问题的算法,通过不断扩展解间,逐步缩小搜索范围,最终找到最优解。它的核心思想是将问题划分成许多子问题,并采用优先队列(或优先级队列)来维护待扩展的子问题合,每次取出优先级最高的子问题进行扩展,直到找到最优解或者队列为。 而装载问题是一种典型的分支限界法应用场景,它的主要思想是在给定的一些物品中选出尽可能多的物品放入容量为C的背包中,使得背包中物品的总重量不超过C,并且背包中物品的总价值最大。这个问题可以通过分支限界法来求解。 下面是一个简单的 Java 代码实现,用于解决装载问题: ```java import java.util.*; public class BranchAndBound { public static void main(String[] args) { int[] w = {5, 10, 20, 30}; // 物品的重量 int[] v = {50, 60, 140, 120}; // 物品的价值 int C = 50; // 背包的容量 int n = w.length; // 物品的数量 int[] x = new int[n]; // 记录每个物品是否被选中 PriorityQueue<Node> queue = new PriorityQueue<>(); queue.offer(new Node(-1, 0, 0)); // 将根节点加入队列中 while (!queue.isEmpty()) { Node node = queue.poll(); // 取出优先级最高的子问题 if (node.level == n - 1) { // 如果是叶子节点,更新最优解 for (int i = 0; i < n; i++) { x[i] = node.x[i]; } } else { int level = node.level + 1; int weight = node.weight; int value = node.value; if (weight + w[level] <= C) { // 左子节点表示选中当前物品 int[] left = Arrays.copyOf(node.x, n); left[level] = 1; queue.offer(new Node(level, weight + w[level], value + v[level], left)); } // 右子节点表示不选当前物品 queue.offer(new Node(level, weight, value, node.x)); } } int max = 0; for (int i = 0; i < n; i++) { if (x[i] == 1) { System.out.println("第" + (i + 1) + "个物品被选中"); max += v[i]; } } System.out.println("最大价值为:" + max); } // 子问题节点 static class Node implements Comparable<Node> { int level; // 当前节点所在的层级 int weight; // 当前节点的背包重量 int value; // 当前节点的背包价值 int[] x; // 记录每个物品是否被选中 public Node(int level, int weight, int value) { this.level = level; this.weight = weight; this.value = value; this.x = new int[0]; } public Node(int level, int weight, int value, int[] x) { this.level = level; this.weight = weight; this.value = value; this.x = x; } @Override public int compareTo(Node o) { return o.value - this.value; // 根据价值进行优先级比较 } } } ``` 希望这个简单的例子能帮助你更好地理解分支限界法和装载问题。如果你还有其他问题或者疑惑,欢迎随时向我提出。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值