codeforces1214E Petya and Construction Set

http://codeforces.com/problemset/problem/1214/E

本来看到是构造题都想直接点外卖吃饭了的,一直觉得这辈子都做不出构造题,没想到脑补了一种做法过了,不知道是不是正解。

按照d从大到小排序,然后从前向后安排,先构造出一条尽可能长的链,我们将奇数点记为a[i],偶数点记为b[i]。

如果当前cnt这个位置可以放之前已经放的某一个a[id]的b[id],也就是cnt离a[id]的距离恰好的d[id],那么就放b[id],如果已经小了,那么b[id]就连向链那个位置已经放的别的数字。

一直构造到a[1...n]全部放完,长链无法再变长时,对于那些还没有安排的b[id],我们选择a[id]所在的位置向前找第d[id]个位置放b[id]。由于是按照d[id]拍过序的,所以后面要安排的d[id]都很小。

其实有更优的构造方法是对于后面无法安排的那些a[id],按照d[id]从小到大再排一次序,那么d[id]在越后面,就越不容易出错。

不过不考虑这么多的做法也过了。。。

#include<bits/stdc++.h>
#define maxl 500010
using namespace std;

int n,m,ans,cnt,tot;
struct node
{
	int d,id;
}a[maxl];
int b[maxl],dis[maxl],dy[maxl];
char s[maxl];
bool in[maxl];
vector <int> add[maxl]; 
typedef pair<int,int> p;
priority_queue<p,vector<p>,greater<p> > q;

inline bool cmp(const node &x,const node &y)
{
	return x.d>y.d;
}

inline void prework()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i].d);
		a[i].id=i;dis[i]=a[i].d;
	}
	sort(a+1,a+1+n,cmp);
}

inline void mainwork()
{
	cnt=1;p d;
	for(int i=1;i<=n;i++)
	{
		b[cnt]=2*a[i].id-1;dy[a[i].id]=cnt;
		q.push(make_pair(cnt+a[i].d,a[i].id));
		++cnt;
		while(!q.empty())
		{
			d=q.top();
			if(d.first==cnt)
			{
				q.pop();
				b[cnt]=2*d.second;
				++cnt;
			}
			else
			if(d.first<cnt)
			{
				q.pop();
				add[d.first-1].push_back(2*d.second);
			}
			else
				break;
		}
	}
	cnt--;
	int id;
	while(!q.empty())
	{
		d=q.top();q.pop();
		id=dy[d.second]-dis[d.second];
		add[id+1].push_back(2*d.second);
	}
}

inline void print()
{
	for(int i=1;i<cnt;i++)
		printf("%d %d\n",b[i],b[i+1]);
	for(int i=1;i<=cnt;i++)
	{
		int l=add[i].size();
		for(int j=0;j<l;j++)
			printf("%d %d\n",b[i],add[i][j]);
	}
}

int main()
{
	int t=1;
	//scanf("%d",&t);
	for(int i=1;i<=t;i++)
	{
		prework();
		mainwork();
		print();
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值