二分图最大匹配-匈牙利
匈牙利算法
二分抄代码
去了18ec没资格去19ec的反向训练选手
展开
-
bzoj1562: [NOI2009]变换序列
https://www.lydsy.com/JudgeOnline/problem.php?id=1562 既然要字典序最小,我们知道匈牙利算法是一找到增广路就迅速转边的。 所以我们每个点的出边需要从大到小,且需要从后往前跑匈牙利,因为前面优先选择最小的边,已找到就迅速转边,不管后面之前已经匹配过的点,怎么匹配。 #include<bits/stdc++.h> using na...原创 2020-01-18 00:04:05 · 128 阅读 · 0 评论 -
bzoj 3140: [Hnoi2013]消毒 洛谷P3231
https://www.luogu.com.cn/problem/P3231 辣鸡bzoj卡常,洛谷过了 首先由于取min值的花费,相当于就是直接选择某一维度为1的去消毒了。 n*m*h<=5000,必有一个很小,那么我们对最小的一维进行2进制枚举,把这一维的哪些部分直接一个平面全部删掉,然后这一维就不管了,剩下的两维就是经典的棋盘问题的二分图匹配方法了,只能删除一整行或者一整列,最少...原创 2020-01-17 23:16:05 · 133 阅读 · 0 评论 -
BZOJ 4443: [Scoi2015]小凸玩矩阵
https://www.lydsy.com/JudgeOnline/problem.php?id=4443 看到第K大的最小,想到二分 那么二分一个第K大值mid,小于等于mid的元素全都连边,然后求二分图最大匹配,如果匹配的超过n-k+1,那么就是可行的 卧槽我今天突然发现vis数组是m对于右边的点,所以长度应该是m,而不是n。。。。WA了好久 #include<bits/std...原创 2020-01-17 21:18:05 · 161 阅读 · 0 评论 -
bzoj 1854: [Scoi2010]游戏
https://www.lydsy.com/JudgeOnline/problem.php?id=1854 匈牙利里面忘记写return false了,结果洛谷全部AC,bzojWA。。。洛谷数据也太水了,估计是没有返回false的情况 就对于每一个武器,两个值a,b,那么要取a值时可以用该武器,取b值时可以用该武器 最后我们用时间戳来代替vis数组就好了 由于这个只有2条边,所以虽然最大...原创 2020-01-16 22:20:53 · 150 阅读 · 0 评论 -
bzoj1059: [ZJOI2007]矩阵游戏
https://www.lydsy.com/JudgeOnline/problem.php?id=1059 水题想一年,图论太菜了 一个很显然的结论,如果某一行或者某一列为没有黑色的话,怎么交换,它都不可能有黑色。 那么其实问题就转化为了每一行里面选择一列作为这一行的占用对角线的黑色棋子。 比如a[1][2] ,a[1][4]都是黑的,那么2,4列放到a[1][1]都是可以的,因为任意交换...原创 2020-01-16 21:14:30 · 144 阅读 · 0 评论 -
bzoj1433 [ZJOI2009]假期的宿舍
https://www.lydsy.com/JudgeOnline/problem.php?id=1433 这题题意有点绕。。。要注意一些理解 1.在校生才有床 2.非在校生都要睡一张床 3.在矩阵中自己不认识自己,但是能睡自己的床,也能睡自己认识的人的床。 那么就可以建图了,看所有要睡床的人能不能都匹配到就行了 #include<bits/stdc++.h> using...原创 2020-01-16 19:32:20 · 120 阅读 · 0 评论 -
DAG最小路径覆盖与二分图最大匹配
DAG的最小路径覆盖和二分图的最大匹配 DAG的最小路径覆盖是指找最小数目的互相不相交的有向路径,满足DAG的所有顶点都被覆盖. 首先给出公式:DAG的最小路径覆盖数=DAG图中的节点数-相应二分图中的最大匹配数. 那么对应一个DAG,如何构造相应的二分图?对于DAG中的一个顶点p,二分图中有两个顶点p和p',对应DAG中的一条有向边p->q,二分图中有p-q'的一条无向边.二分图中转载 2017-08-22 18:58:44 · 537 阅读 · 0 评论 -
UVA - 11419
二分图最小点覆盖=最大匹配。 这题巧的是对于解的构造,lrj故意在白书上不写原因和证明,留给我们思考,我找了好多博客才找到一个详细写了这个问题的题解。 左边集为S,右边集为T,现在我们已经得到了最大匹配,知道了S,T中的匹配点。那我们怎么知道每一条边(匹配和未匹配)选哪一个点进行覆盖呢? 我们先假设已经匹配边中的全部选择S中的匹配点,但我们发现S中还有一些未匹配点对T中的已匹配点连着未匹配边原创 2017-08-23 16:07:12 · 331 阅读 · 0 评论 -
二分图最大匹配的König定理及其证明
就是用这个定理的性质证明之前那道题的最小覆盖点集构造问题解法的正确性。智商之神matrix67 本文将是这一系列里最短的一篇,因为我只打算把König定理证了,其它的废话一概没有。 以下五个问题我可能会在以后的文章里说,如果你现在很想知道的话,网上去找找答案: 1. 什么是二分图; 2. 什么是二分图的匹配; 3. 什么是匈牙利算法;(http://ww转载 2017-08-23 16:42:08 · 301 阅读 · 0 评论