CH5104 I-country

https://ac.nowcoder.com/acm/contest/1041/F

这题早就想出来了,然而一直没写掉,感觉对恶心的分情况题有一种畏惧感,好久没写这样的题了,我已经不再是去年的模拟王者了,以后还是要勤加练习。。。

周六下午就欠着的题,周日体侧+实验报告,周一生病到周三。。。

很显然凸多边形就是从上向下的方向上,左边界先向左再向右,右边界先向右再向左

那么就很显然可以设出基本的状态,f[i][k][l][r][fl][fr]表示到第i行取了k个格子,这行左边界是l右边界是r,而且当前情况的左边界和右边界的状态是fl,和fr。

我设置的fl=0是左边界向左移动,fr=0是右边界向右移动,即最初始的状态。

这样的情况下的最优值是多少,再用个frm数组记录从哪转移过来的,最后用一个递归配合frm数组输出答案即可。

#include<bits/stdc++.h>
using namespace std;

int n,m,K,ans;
int a[20][20],sum[20][20];
int f[20][250][20][20][2][2];
struct qu
{
	int i,k,l,r,fl,fr;
}frm[20][250][20][20][2][2],ansqu;
struct node{int x,y;};
vector <node> anss;

inline void print(qu x)
{
	if(x.l==x.r && x.l==0)
		return;
	for(int i=x.l;i<=x.r;i++)
		printf("%d %d\n",x.i,i);
	print(frm[x.i][x.k][x.l][x.r][x.fl][x.fr]);
}

int main()
{
	scanf("%d%d%d",&n,&m,&K);
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
		{	
			scanf("%d",&a[i][j]);
			sum[i][j]=sum[i][j-1]+a[i][j];
		}
	for(int i=1;i<=n;i++)
	for(int k=1;k<=K;k++)
	for(int l=1;l<=m;l++)
	for(int r=l;r<=m;r++)
	{
		int len=r-l+1,t=sum[i][r]-sum[i][l-1];
		if(len>k) continue;
		if(len==k)
		{
			f[i][k][l][r][0][0]=sum[i][r]-sum[i][l-1];
			frm[i][k][l][r][0][0]=qu{0,0,0,0,0,0};
			if(f[i][k][l][r][0][0]>ans)
			{
				ans=f[i][k][l][r][0][0];
				ansqu=qu{i,k,l,r,0,0};
			}
			continue;
		}
		for(int l1=l;l1<=r;l1++)		//0 0 
			for(int r1=l1;r1<=r;r1++)
			{
				int len1=r1-l1+1;
				if(len1>k-len) continue;
				if(f[i-1][k-len][l1][r1][0][0]+t>f[i][k][l][r][0][0])
				{
					f[i][k][l][r][0][0]=f[i-1][k-len][l1][r1][0][0]+t;
					frm[i][k][l][r][0][0]=qu{i-1,k-len,l1,r1,0,0};
				}
				if(f[i][k][l][r][0][0]>ans)
				{
					ans=f[i][k][l][r][0][0];
					ansqu=qu{i,k,l,r,0,0};
				}
			}		
		for(int l1=1;l1<=l;l1++)		//1 0 
			for(int r1=l;r1<=r;r1++)
			{
				int len1=r1-l1+1;
				if(len1>k-len) continue;
				if(f[i-1][k-len][l1][r1][0][0]+t>f[i][k][l][r][1][0])
				{
					f[i][k][l][r][1][0]=f[i-1][k-len][l1][r1][0][0]+t;
					frm[i][k][l][r][1][0]=qu{i-1,k-len,l1,r1,0,0};
				}
				if(f[i-1][k-len][l1][r1][1][0]+t>f[i][k][l][r][1][0])
				{
					f[i][k][l][r][1][0]=f[i-1][k-len][l1][r1][1][0]+t;
					frm[i][k][l][r][1][0]=qu{i-1,k-len,l1,r1,1,0};
				}
				if(f[i][k][l][r][1][0]>ans)
				{
					ans=f[i][k][l][r][1][0];
					ansqu=qu{i,k,l,r,1,0};
				}
			}
		for(int l1=l;l1<=r;l1++)		//0 1 
			for(int r1=r;r1<=m;r1++)
			{
				int len1=r1-l1+1;
				if(len1>k-len) continue;
				if(f[i-1][k-len][l1][r1][0][0]+t>f[i][k][l][r][0][1])
				{
					f[i][k][l][r][0][1]=f[i-1][k-len][l1][r1][0][0]+t;
					frm[i][k][l][r][0][1]=qu{i-1,k-len,l1,r1,0,0};
				}
				if(f[i-1][k-len][l1][r1][0][1]+t>f[i][k][l][r][0][1])
				{
					f[i][k][l][r][0][1]=f[i-1][k-len][l1][r1][0][1]+t;
					frm[i][k][l][r][0][1]=qu{i-1,k-len,l1,r1,0,1}; 
				}
				if(f[i][k][l][r][0][1]>ans)
				{
					ans=f[i][k][l][r][0][1];
					ansqu=qu{i,k,l,r,0,1};
				}
			}
		for(int l1=1;l1<=l;l1++)		//1 1 
			for(int r1=r;r1<=m;r1++)
			{
				int len1=r1-l1+1;
				if(len1>k-len) continue;
				if(f[i-1][k-len][l1][r1][0][0]+t>f[i][k][l][r][1][1])
				{
					f[i][k][l][r][1][1]=f[i-1][k-len][l1][r1][0][0]+t;
					frm[i][k][l][r][1][1]=qu{i-1,k-len,l1,r1,0,0};
				}
				if(f[i-1][k-len][l1][r1][1][0]+t>f[i][k][l][r][1][1])
				{
					f[i][k][l][r][1][1]=f[i-1][k-len][l1][r1][1][0]+t;
					frm[i][k][l][r][1][1]=qu{i-1,k-len,l1,r1,1,0};
				}
				if(f[i-1][k-len][l1][r1][0][1]+t>f[i][k][l][r][1][1])
				{
					f[i][k][l][r][1][1]=f[i-1][k-len][l1][r1][0][1]+t;
					frm[i][k][l][r][1][1]=qu{i-1,k-len,l1,r1,0,1};
				}
				if(f[i-1][k-len][l1][r1][1][1]+t>f[i][k][l][r][1][1])
				{
					f[i][k][l][r][1][1]=f[i-1][k-len][l1][r1][1][1]+t;
					frm[i][k][l][r][1][1]=qu{i-1,k-len,l1,r1,1,1};
				}
				if(f[i][k][l][r][1][1]>ans)
				{
					ans=f[i][k][l][r][1][1];
					ansqu=qu{i,k,l,r,1,1};
				}
			}
	}
	printf("Oil : %d\n",ans);
	print(ansqu);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值