gym102341C. Cloyster

https://codeforces.com/gym/102341/problem/C

首先观察发现对于任意一个数,一定有通向最大数的路径

那么我们就可以对最大值所在区间进行二分,选择长和宽较大的那边进行二分

然后我们考虑二分中线上的最大值,如果它比已有的最大值还要大,那么再找他周围四格中的最大值, 如果四格最大值在他左边,由于这个中线上的最大值无法通过中线其他格子找到全局最大值,只能通过他自己到达左边,说明全局最大值就在左边

那么我们不断地二分长宽,直到找到最大值,这样是近似于3n的

代码写得比较精妙,中间重构过一遍,后面才过,即使中线上的最大值不是当前找到的最大值我们也去找周围8个,然后根据找到的最大值确定选最大值在哪一边

 

#include<bits/stdc++.h>
using namespace std;

const int maxl=2010;

int n,mx,mxx,mxy;
int a[maxl][maxl];

inline int qry(int x,int y)
{
	cout<<"? "<<x<<" "<<y<<'\n';
	int ret;cin>>ret;
	return ret;
}

inline void gao(int x,int y)
{
	if(x<1 || x>n || y<1 || y>n)
		return;
	if(!a[x][y])
		a[x][y]=qry(x,y);
	if(a[x][y]>mx)
		mx=a[x][y],mxx=x,mxy=y;
}

inline void gank(int x,int y)
{
	gao(x-1,y);gao(x+1,y);gao(x+1,y-1);gao(x+1,y+1);
	gao(x,y-1);gao(x,y+1);gao(x-1,y-1);gao(x-1,y+1);
}

int main()
{
	cin>>n;
	int l=1,r=n,d=1,u=n,mid;
	while(l<r || d<u)
	{
		if(r-l+1<=u-d+1)
		{
			mid=(u+d)/2;
			for(int j=l;j<=r;j++)
				gao(mid,j);
			gank(mxx,mxy);
			if(mxx<=mid)
				u=mid;
			else
				d=mid+1;
		}
		else
		{
			mid=(l+r)/2;
			for(int i=d;i<=u;i++)
				gao(i,mid);
			gank(mxx,mxy);
			if(mxy<=mid)
				r=mid;
			else
				l=mid+1;
		}
	}
	cout<<"! "<<mxx<<" "<<mxy<<'\n';
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值