https://codeforces.com/gym/102341/problem/C
首先观察发现对于任意一个数,一定有通向最大数的路径
那么我们就可以对最大值所在区间进行二分,选择长和宽较大的那边进行二分
然后我们考虑二分中线上的最大值,如果它比已有的最大值还要大,那么再找他周围四格中的最大值, 如果四格最大值在他左边,由于这个中线上的最大值无法通过中线其他格子找到全局最大值,只能通过他自己到达左边,说明全局最大值就在左边
那么我们不断地二分长宽,直到找到最大值,这样是近似于3n的
代码写得比较精妙,中间重构过一遍,后面才过,即使中线上的最大值不是当前找到的最大值我们也去找周围8个,然后根据找到的最大值确定选最大值在哪一边
#include<bits/stdc++.h>
using namespace std;
const int maxl=2010;
int n,mx,mxx,mxy;
int a[maxl][maxl];
inline int qry(int x,int y)
{
cout<<"? "<<x<<" "<<y<<'\n';
int ret;cin>>ret;
return ret;
}
inline void gao(int x,int y)
{
if(x<1 || x>n || y<1 || y>n)
return;
if(!a[x][y])
a[x][y]=qry(x,y);
if(a[x][y]>mx)
mx=a[x][y],mxx=x,mxy=y;
}
inline void gank(int x,int y)
{
gao(x-1,y);gao(x+1,y);gao(x+1,y-1);gao(x+1,y+1);
gao(x,y-1);gao(x,y+1);gao(x-1,y-1);gao(x-1,y+1);
}
int main()
{
cin>>n;
int l=1,r=n,d=1,u=n,mid;
while(l<r || d<u)
{
if(r-l+1<=u-d+1)
{
mid=(u+d)/2;
for(int j=l;j<=r;j++)
gao(mid,j);
gank(mxx,mxy);
if(mxx<=mid)
u=mid;
else
d=mid+1;
}
else
{
mid=(l+r)/2;
for(int i=d;i<=u;i++)
gao(i,mid);
gank(mxx,mxy);
if(mxy<=mid)
r=mid;
else
l=mid+1;
}
}
cout<<"! "<<mxx<<" "<<mxy<<'\n';
}