因为要求gcd之和,所以枚举约数k然后找有多少个gcd是k的,因为gcd(i,n)=k,所gcd(i/k,n/k)=1,所以只要与n/k互质的都行,就用欧拉函数找出与n/k互质的个数,因为i是n的约数,所以n/i也是i的约数,就只要枚举到sqrt(n)就行啦
#include<cstdio>
#include<cmath>
long long n,ans;
int m;
long long phi(long long x)
{
long long t=x,l=sqrt(x);
for(long long i=2;i<=l;i++)
if(x%i==0)
{
t=t/i*(i-1);
while(x%i==0)
x/=i;
}
if(x>1)
t=t/x*(x-1);
return t;
}
int main()
{
scanf("%lld",&n);
m=sqrt(n);
for(int i=1;i<=m;i++)
if(n%i==0)
{
ans+=(long long)i*phi(n/i);
if(i*i<n)
ans+=(long long)(n/i)*phi(i);
}
printf("%lld",ans);
return 0;
}