[欧拉函数]Bzoj2705 Longge的问题[SDOI2012]

因为要求gcd之和,所以枚举约数k然后找有多少个gcd是k的,因为gcd(i,n)=k,所gcd(i/k,n/k)=1,所以只要与n/k互质的都行,就用欧拉函数找出与n/k互质的个数,因为i是n的约数,所以n/i也是i的约数,就只要枚举到sqrt(n)就行啦

#include<cstdio>
#include<cmath>

long long n,ans;
int m;

long long phi(long long x)
{
    long long t=x,l=sqrt(x);
    for(long long i=2;i<=l;i++)
    if(x%i==0)
    {
        t=t/i*(i-1);
        while(x%i==0)
            x/=i;
    }
    if(x>1)
        t=t/x*(x-1);
    return t;
}

int main()
{
    scanf("%lld",&n);
    m=sqrt(n);
    for(int i=1;i<=m;i++)
    if(n%i==0)
    {
        ans+=(long long)i*phi(n/i);
        if(i*i<n)
            ans+=(long long)(n/i)*phi(i);
    }
    printf("%lld",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值