POJ2653 用叉积判断线段相交

2019.2.12更新,以前第二条判断完全是错的。。。怎么就过了。。。

第一步:先判断一条线段所在直线与另外一条线段相交

第二步:再判断另外一条线段所在直线与此线段相交

一下代码只能说明有重合部分,并未求出线段交点

#include<cstdio>
#include<cstring>
#include<cmath>
#define maxl 100010
#define eps 1e-8
 
using namespace std;
 
inline int sgn(double x)
{
	if(fabs(x)<eps) return 0;
	if(x<0) 
		return -1;
	else
		return 1;
}
 
struct point
{
	double x,y;
	point(double a=0,double b=0)
	{
		x=a;y=b;
	}
	point operator - (const point &b)const
	{
		return point(x-b.x,y-b.y);
	}
    //按照x坐标排序
    bool operator < (const point &b)const
	{
		return x<b.x-eps;
	}
	bool operator == (const point &b)const 
	{
		return sgn(x-b.x)==0 && sgn(y-b.y)==0;
	}
	friend point operator * (const point &a,const double &b)			//数乘
	{
		return point(b*a.x,b*a.y);
	}
	friend point operator * (const double &a,const point &b)
	{
		return point(a*b.x,a*b.y);
	}
	void transxy(double &sinb,double &cosb)
	{						//逆时针旋转,给出sin,cos 
		double tx=x,ty=y;
		x=tx*cosb-ty*sinb;
		y=tx*sinb+ty*cosb;
	}
	void transxy(double &b)//逆时针旋转b弧度
	{
		double tx=x,ty=y;
		x=tx*cos(b)-ty*sin(b);
		y=tx*sin(b)+ty*cos(b);
	}
	double norm()
	{
		return sqrt(x*x+y*y);
	}
};
inline double det(const point &a,const point &b)
{					//叉积 
	return a.x*b.y-a.y*b.x;
}
inline double dot(const point &a,const point &b)
{					//点积 
	return a.x*b.x+a.y*b.y;
}
inline double dist(const point &a,const point &b)
{
	return (a-b).norm();
}
 
struct line 
{
	point s,e;
	line(point a=point(),point b=point())
	{
		s=a;e=b;
	}
};
 
int n;
line a[maxl];
int ans[maxl];
bool top[maxl];
 
inline void prework()
{
	point p1,p2;
	for(int i=1;i<=n;i++)
	{
		scanf("%lf%lf%lf%lf",&p1.x,&p1.y,&p2.x,&p2.y);
		a[i].s=p1;a[i].e=p2;
		top[i]=true;
	}
}
 
inline bool parallel(line &l1,line &l2)
{
	return !sgn(det(l1.e-l1.s,l2.e-l2.s));
}

inline bool point_on_seg(point &p,line &a)
{
	return sgn(det(p-a.s,p-a.e))==0 && sgn(dot(p-a.s,p-a.e))<=0;
}

inline bool cross(line l1,line l2)
{
	if(parallel(l1,l2))//覆盖的情况 
		return point_on_seg(l1.s,l2) || point_on_seg(l1.e,l2) 
			|| point_on_seg(l2.s,l1) || point_on_seg(l2.e,l1);
	line vec=line(l1.s,l1.e-l1.s);
	if(det(l2.s-vec.s,vec.e)*det(vec.e,l2.e-vec.s)<0-eps) 
		return false; //经过端点是0,算相交
	vec=line(l2.s,l2.e-l2.s); 
	if(det(l1.s-vec.s,vec.e)*det(vec.e,l1.e-vec.s)<0+eps)
		return false;
	return true;
}
 
inline void mainwork()
{
	ans[0]=0;
	for(int i=1;i<=n;i++)
	{	
		for(int j=i+1;j<=n;j++)
		if(cross(a[i],a[j]))
		{
			top[i]=false;
			break;
		}
		if(top[i])
			ans[++ans[0]]=i;
	}
}
 
inline void print()
{
	printf("Top sticks:");
	for(int i=1;i<=ans[0];i++)
		printf(" %d%c",ans[i],(i==ans[0])?'.':',');
	puts("");
}
 
int main()
{
	while(~scanf("%d",&n) && n)
	{
		prework();
		mainwork();
		print();
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值