二分图最小点覆盖=最大匹配。
这题巧的是对于解的构造,lrj故意在白书上不写原因和证明,留给我们思考,我找了好多博客才找到一个详细写了这个问题的题解。
左边集为S,右边集为T,现在我们已经得到了最大匹配,知道了S,T中的匹配点。那我们怎么知道每一条边(匹配和未匹配)选哪一个点进行覆盖呢?
我们先假设已经匹配边中的全部选择S中的匹配点,但我们发现S中还有一些未匹配点对T中的已匹配点连着未匹配边,这个时候最优的办法是选择当前这条未匹配边中在T里面的点,因为它既可以控制这条未匹配边,又可以控制它原来匹配过的边。
于是我们想到了增广路算法,从所有未匹配点出发寻找增广路,然后标记经过的T中的点和的S中的点,则最后的答案就是所有S中未经过的点和T中标记的点,因为T中标记过的点可以替换所有S中标记过的点,将他们之间的边覆盖掉。而S中未标记的点都是存在匹配的边,而完全未与任何S中未标记的形成争夺某个T中匹配点的关系。(这句话好好理解一下),所以就必须选择这些S中未标记的点去覆盖他们的匹配边。(注意一个细节,那些没有任何连边的S中的未匹配点已经全部被标记,不用考虑)。
代码几乎是抄来的,当时还没有理解增广路算法和构造最小点覆盖解的原理。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxl 1010
using namespace std;
int n,m,k,cas=0,sum,ans,cnt;
int ehead[maxl],lnkl[maxl],lnkr[maxl],r[maxl],c[maxl];
struct ed{int to,nxt;} e[maxl*maxl*2];
bool lused[maxl],rused[maxl],vis[maxl];
bool lnk[maxl][maxl];
void prework()
{
memset(ehead,0,sizeof(ehead));
memset(lnkl,0,sizeof(lnkl));memset(lnkr,0,sizeof(lnkr));
memset(lnk,false,sizeof(lnk));
int u,v,d;cnt=0;
for(int i=1;i<=k;i++)
{
scanf("%d%d",&u,&v);
cnt++;e[cnt].nxt=ehead[u];ehead[u]=cnt;e[cnt].to=v;
lnk[u][v]=true;
}
}
bool find(int x)
{
int v;lused[x]=true;
for(int i=ehead[x];i;i=e[i].nxt)
{
v=e[i].to;
if(!rused[v])
{
rused[v]=true;
if(lnkr[v]==0 || find(lnkr[v]))
{
lnkl[x]=v;lnkr[v]=x;
return true;
}
}
}
return false;
}
void mainwork()
{
sum=0;ans=0;int lastsum=0;
for(int i=1;i<=n;i++)
{
memset(lused,false,sizeof(lused));
memset(rused,false,sizeof(rused));
if(find(i))
ans++;
}
memset(lused,false,sizeof(lused));
memset(rused,false,sizeof(rused));
for(int i=1;i<=n;i++)
if(!lnkl[i])
find(i);
memset(r,0,sizeof(r));memset(c,0,sizeof(c));
for(int i=1;i<=n;i++)
if(!lused[i])
r[++r[0]]=i;
for(int i=1;i<=m;i++)
if(rused[i])
c[++c[0]]=i;
}
void print()
{
cas++;
printf("%d ",ans);
for(int i=1;i<=r[0];i++)
printf("r%d ",r[i]);
for(int i=1;i<=c[0];i++)
printf("c%d ",c[i]);
printf("\n");
}
int main()
{
while(~scanf("%d%d%d",&n,&m,&k) && (n || m || k))
{
prework();
mainwork();
print();
}
return 0;
}