基于Spark的电影推荐系统(推荐系统~3)

本篇博客介绍如何基于Spark on Yarn处理数据仓库中的ratings表,将数据切分为训练集和测试集,比例为7:3,最近的数据作为测试集。通过详细步骤展示从代码编写到执行的过程,完成数据加工,为模型训练做准备。
摘要由CSDN通过智能技术生成

第四部分-推荐系统-数据加工

  • 本模块基于第2节加载到 数据仓库 里的数据做进一步的加工,加工后的数据主要用于 模型训练 。
前置准备

本节我采用Spark on Yarn 来跑作业
拓展:Hadoop YARN中内存的设置
(1)yarn.scheduler.minimum-allocation-mb
单个任务可申请的最少物理内存量,默认是1024(MB),如果一个任务申请的物理内存量少于该值,则该对应的值改为这个数。
(2)yarn.scheduler.maximum-allocation-mb
单个任务可申请的最多物理内存量,默认是8192(MB)。
(3)yarn.nodemanager.resource.memory-mb
表示该节点上YARN可使用的物理内存总量,默认是8192(MB),注意,如果你的节点内存资源不够8GB,则需要调减小这个值,而YARN不会智能的探测节点的物理内存总量。
$HADOOP_HOME/etc/hadoop
NM(yarn-site.xml)

<property>
 <name>yarn.nodemanager.resource.memory-mb</name>
 <value>14336</value>
</property>

说明几点

  1. 把数据仓库里 ratings表数据 切分成训练集和测试集数据 7:3 越靠近最近时间段的数据作为测试数据集。代码中的主要操作是需要将 ratings 表数据按照 timestamp 字段进行 升序 降序的
  2. 调用cache table tableName or cacheTable即可将一张表缓存到内存中,来极大的提高查询效率,主要由于后面代码多次使用到
    在这里插入图片描述

开始项目Coding

步骤一: 在第二节中的项目中,新建machiniing包,再新建RatingDataApp

package com.csylh.recommend.datamachining

import org.apache.spark.sql.{
   SaveMode, SparkSession}
import org.apache.spark.storage.StorageLevel

/**
  * Description:
  *   数据加工:  ratings 评分数据[≈0.27亿]切分成训练集和测试集数据 7:3
  *
  *   为模型训练 准备的RDD数据集
  *   ratings(userId int,movieId int,rating Double,timestamp int)
  *   ==> timestamp 拆分
  *   trainingData(userId int,movieId int,rating double) 前70% 训练集
  *   testData(userId int,movieId int,rating double)  后3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值