【python】进程学习之单进程、多进程和进程池对比

文章比较了单进程、多进程以及进程池在处理20个大文件(共1.21GB)拷贝任务中的运行时间,发现进程池中使用1-2个进程时效率最高,超过3个进程后效率下降。
摘要由CSDN通过智能技术生成

多进程教程练习,某目录下,20个文件,每个文件62M,共1.21G。拷贝至另一处。

单进程结果

编号为8028的进程,运行时长: 6.34秒。

多进程结果

有20个文件就生成20个进程。

运行时长: 0.36~3.79秒。
 

进程池结果

pool = multiprocessing.Pool() # 无参,使用CPU所有核,6核。

运行时长: 0.3~3.21秒。

pool = multiprocessing.Pool(processes=1)

运行时长: 0.16~0.96秒。

pool = multiprocessing.Pool(processes=2)

运行时长: 0.53~0.82秒。
 

pool = multiprocessing.Pool(processes=3)

运行时长: 0.62~2.08秒。

pool = multiprocessing.Pool(processes=4)
运行时长: 0.89~2.74秒。

现已知,多进程时3.8秒完成。

进程池中有一个或两个进程时,效率最高,均在1秒内完成。进程越多反而效率在下降。

import os
import multiprocessing
import time
from functools import partial


def copy_file(source_dir, dest_dir, filename):
    source_path = source_dir + "\\" + filename
    dest_path = dest_dir + "\\" + filename
    start_time = time.time()
    with open(source_path, "rb") as source_file:
        with open(dest_path, "wb") as dest_file:
            while True:
                data = source_file.read(1024)  # 源文件每次读1k数据
                if data:
                    dest_file.write(data)
                else:
                    break
    end_time = time.time()

    execution_time = end_time - start_time
    print(f"编号为{os.getpid()}的进程,运行时长: {round(execution_time, 2)}秒。")


if __name__ == '__main__':
    source_dir = r"D:\6"
    dest_dir = r"C:\Users\xcxc\Desktop\six"

    try:
        os.mkdir(dest_dir)
    except:
        print("目标文件夹已经存在。")

    file_list = os.listdir(source_dir)

    # for file_name in file_list:
    #     # copy_file(file_name, source_dir, dest_dir)
    #     sub_process = multiprocessing.Process(target=copy_file,
    #                                           args=(file_name, source_dir, dest_dir))
    #     sub_process.start()

    filename_list = list(file_name for file_name in file_list)
    func = partial(copy_file, source_dir, dest_dir)
    pool = multiprocessing.Pool(processes=4)
    pool.map(func, filename_list)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五月春生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值