目录
注:示例代码使用的语言是Python
1、Kafka 消费方式
1、pull(拉)模 式:
- consumer采用从broker中主动拉取数据。
- Kafka采用这种方式
- 缺点:
- pull模式不足之处是,如 果Kafka没有数 据,消费者可能会陷入循环中,一直返回 空数据。
2、push(推)模式:
Kafka没有采用这种方式,因为由broker 决定消息发送速率,很难适应所有消费者的 消费速率。若推送的速度是100m/s, Consumer1、Consumer2就来不及处理消息。
2、Kafka 消费者工作流程
2.1、消费者工作流程
2.2、消费组者说明
1、消费者组
- Consumer Group(CG):消费者组,由多个consumer组成。形成一个消费者组的条件:是所有消费者的groupid相同。
- 消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费。
- 消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。
- 如果向消费组中添加更多的消费者,超过 主题分区数量,则有一部分消费者就会闲 置,不会接收任何消息。
- 消费者组之间互不影响。所 有的消费者都属于某个消费 者组,即消费者组是逻辑上 的一个订阅者。
2、消费者组初始化流程
- coordinator:辅助实现消费者组的初始化和分区的分配。
- coordinator节点选择 = groupid的hashcode值 % 50( __consumer_offsets的分区数量)
- 例如: groupid的hashcode值 = 3,3% 50 = 3 (50是默认分区数),那么__consumer_offsets 主题的3号分区,在哪个broker上,就选择这个节点的coordinator 作为这个消费者组的老大。消费者组下的所有的消费者提交offset的时候就往这个分区去提交offset。
- 每个消费者都会和coordinator保持心跳(默认3秒),一旦超时(session.timeout.ms=45s),该消费者会被移除,并触发再平衡或者消费者处理的时间过长(max.poll.interval.ms 5分钟),也会触发再平衡。
3、消费者 API
3.1、独立消费者-订阅主题
- 示例: 创建一个独立消费者,消费 first 主题中数据
- 注意:在消费者 API 代码中必须配置消费者组 id(JAVA)【Python中可不指定消费组ID,会默认生成】。命令行启动消费者不填写消费者组 id 会被自动填写随机的消费者组 id。
"""
独立消费者,指定消费组id
"""
import time
from kafka3 import KafkaConsumer, KafkaProducer
class Serializer:
@staticmethod
def deserialize_bytes(deserialized_data: bytes):
# 将bytes类型反序列化为str类型
data = str(deserialized_data, "utf-8")
return data
@staticmethod
def serialize_str(serialize_data: str):
# 将str类型序列化为bytes类型
serialized_data = bytes(serialize_data, 'utf-8')
return serialized_data
def comsumer(*topics, filter=None, group_id="test", enable_auto_commit=False):
"""
:fuction: 消费者, 完成数据消费
:param topic: 需要消费数据的所在的topic, 可以消费多个topic
:param filter: 过滤器 过滤展示/消费指定行为, 匹配方式为模糊匹配
:param group_id: 消费组id 默认test
:param enable_auto_commit: 是否自动提交消费,默认False
:return:
"""
print("开始消费数据......")
consumer = KafkaConsumer(*topics,
bootstrap_servers=["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"],
group_id=group_id,
enable_auto_commit=enable_auto_commit
)
for message in consumer:
# print(eval(str(message.value, "utf-8")), end="\n")
print(Serializer.deserialize_bytes(message.value))
print(f"消费消息的时间戳: {message.timestamp}")
print(f"消息所在的topic: {message.topic}; 消息所在的分区: {message.partition}; 消息的偏移量: {message.offset}; "
f"消息key值: {message.key}; 消费的时间: {time.strftime('%Y-%m-%d %H:%M:%S'), int(round(time.time() * 1000))}\n")
if __name__ == '__main__':
topic = "first"
comsumer(topic)
3.2、独立消费者-订阅分区
示例:创建一个独立消费者,消费 first 主题 0 号分区的数据。
"""
独立消费者,指定消费组id
指定分区消费数据
"""
import time
from kafka3 import KafkaConsumer, KafkaProducer, TopicPartition, KafkaClient
class Serializer:
@staticmethod
def deserialize_bytes(deserialized_data: bytes):
# 将bytes类型反序列化为str类型
data = str(deserialized_data, "utf-8")
return data
@staticmethod
def serialize_str(serialize_data: str):
# 将str类型序列化为bytes类型
serialized_data = bytes(serialize_data, 'utf-8')
return serialized_data
def comsumer(*topics, partition=0, filter=None, group_id="test", enable_auto_commit=False):
"""
:fuction: 消费者, 完成数据消费
:param topic: 需要消费数据的所在的topic, 可以消费多个topic
:param partition: 消费指定分区数据,默认0
:param filter: 过滤器 过滤展示/消费指定行为, 匹配方式为模糊匹配
:param group_id: 消费组id 默认test
:param enable_auto_commit: 是否自动提交消费,默认False
:return:
"""
print("开始消费数据......")
consumer_config = {
'bootstrap_servers': ["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"],
'client_id': group_id,
'enable_auto_commit': enable_auto_commit
}
consumer = KafkaConsumer(**consumer_config)
# 分配分区0给消费者
consumer.assign([TopicPartition(topic, partition) for topic in topics])
for message in consumer:
print(Serializer.deserialize_bytes(message.value))
print(f"消费消息的时间戳: {message.timestamp}")
print(f"消息所在的topic: {message.topic}; 消息所在的分区: {message.partition}; 消息的偏移量: {message.offset}; "
f"消息key值: {message.key}; 消费的时间: {time.strftime('%Y-%m-%d %H:%M:%S'), int(round(time.time() * 1000))}\n")
3.3、消费组
- 示例:测试同一个主题的分区数据,只能由一个消费者组中的一个消费。
1、案例实操
- 1、复制两份份基础消费者的代码,在 pycharm中同时启动,即可启动同一个消费者组中 的三个消费者。
- 2、启动代码中的生产者发送消息,在 pycharm 控制台即可看到三个消费者在消费不同 分区的数据(如果只发送到一个分区,可以在发送时增加延迟代码 Thread.sleep(2);)。
4、分区的分配策略以及再平衡
- 1、一个consumer group中有多个consumer组成,一个 topic有多个partition组成,现在的问题是,到底由哪个consumer来消费哪个 partition的数据。
- 2、Kafka有四种主流的分区分配策略: Range、RoundRobin、Sticky、CooperativeSticky。 可以通过配置参数partition.assignment.strategy,修改分区的分配策略。
- 默认策略是Range + CooperativeSticky。Kafka可以同时使用 多个分区分配策略。(JAVA)
- 默认策略是Range + RoundRobin。(Python)
注:下面这些默认参数配置是JAVA的,与Python的默认配置略有不同
【Python的默认配置如下】
'max_poll_interval_ms': 300000,
'session_timeout_ms': 10000,
'heartbeat_interval_ms': 3000,
4.1、Range 策略
Range 是对每个 topic 而言的。
- 首先对同一个 topic 里面的分区按照序号进行排序,并 对消费者按照字母顺序进行排序。
- 假如现在有 10 个分区,3 个消费者,排序后的分区将会 是0,1,2,3,4,5,6,7,8,9;消费者排序完之后将会是C0,C1,C2。
- 例如,10/3 = 3 余 1 ,那么 消费者 C0 便会多 消费 1 个分区。 11/3=3余2,那么C0和C1分别多 消费一个。
- 通过 partitions数/consumer数 来决定每个消费者应该 消费几个分区。如果有余数,那么前面几个消费者将会多 消费 1 个分区。
注意:如果只是针对 1 个 topic 而言,C0消费者多消费1 个分区影响不是很大。但是如果有 N 多个 topic,那么针对每 个 topic,消费者 C0都将多消费 1 个分区,topic越多,C0消 费的分区会比其他消费者明显多消费 N 个分区。 容易产生数据倾斜!
1、Range 分区分配策略示例
- 1、修改主题 first 为 7 个分区。
- 注意:分区数可以增加,但是不能减少。
bin/kafka-topics.sh --bootstrap-server node1:9092 --alter --topic first --partitions 7
- 2、设置分区分配策略为Range。
# 设置分区分配策略为Range
partition_assignment_strategy = (RangePartitionAssignor,)
consumer = KafkaConsumer(*topics,
bootstrap_servers=["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"],
group_id=group_id,
enable_auto_commit=enable_auto_commit,
partition_assignment_strategy=partition_assignment_strategy
)
- 3、复制 CustomConsumer 类,创建 CustomConsumer2。这样可以由三个消费者 CustomConsumer、CustomConsumer1、CustomConsumer2 组成消费者组,组名都为“test”, 同时启动 3 个消费者。
- 4、启动 CustomProducer 生产者,发送 500 条消息,随机发送到不同的分区。
- 5、观察3 个消费者分别消费哪些分区的数据。
- 可以看到consumer3消费了:0、1、2分区;consumer2消费了:3、4分区;consumer消费了:5、6分区
2、Range 分区分配再平衡示例
1、停止掉 0 号消费者,快速重新发送消息观看结果(10s 以内)。
- 1 号消费者:消费到 0、1、2号分区数据。
- 2 号消费者:消费到 3、4、5、6 号分区数据。
- 0 号消费者的任务会整体被分配到 1 号消费者或者 2 号消费者。
说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需 要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。
2、再次重新发送消息观看结果(10s 以后)。
- 1 号消费者:消费到 0、1、2、3 号分区数据。
- 2 号消费者:消费到 4、5、6 号分区数据。
说明:消费者 0 已经被踢出消费者组,所以重新按照 range 方式分配。
4.2、RoundRobin 策略
- RoundRobin 针对集群中所有Topic而言。
- RoundRobin 轮询分区策略,是把所有的 partition 和所有的 consumer 都列出来,然后按照 hashcode 进行排序,最后 通过轮询算法来分配 partition 给到各个消费者。
1、RoundRobin 分区分配策略示例
- 1、依次在 CustomConsumer、CustomConsumer1、CustomConsumer2 三个消费者代 码中修改分区分配策略为 RoundRobin。
# 设置分区分配策略为RoundRobinPartitionAssignor
partition_assignment_strategy = (RoundRobinPartitionAssignor,)
consumer = KafkaConsumer(*topics,
bootstrap_servers=["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"],
group_id=group_id,
enable_auto_commit=enable_auto_commit,
partition_assignment_strategy=partition_assignment_strategy
)
- 2、重启 3 个消费者,重复发送消息的步骤,观看分区结果。
- 可以看到consumer3消费了:1、4分区;consumer2消费了:0、3、6分区;consumer消费了:2、5分区
2、RoundRobin 分区分配再平衡示例
1、停止掉 0 号消费者,快速重新发送消息观看结果(10s 以内)。
- 1 号消费者:消费到 0、2、4、6号分区数据
- 2 号消费者:消费到 1、3、5 号分区数据
- 0 号消费者的任务会按照 RoundRobin 的方式,把数据轮询分成 2 和 5 号分区数据, 分别由 1 号消费者或者 2 号消费者消费。
说明:0 号消费者挂掉后,消费者组需要按照超时时间 10s 来判断它是否退出,所以需 要等待,时间到了 10s 后,判断它真的退出就会把任务分配给其他 broker 执行。
2、再次重新发送消息观看结果(10s 以后)。
- 1 号消费者:消费到 0、2、4、6 号分区数据
- 2 号消费者:消费到 1、3、5 号分区数据
说明:消费者 0 已经被踢出消费者组,所以重新按照 RoundRobin 方式分配。
4.3、Sticky 策略
- 粘性分区定义:可以理解为分配的结果带有“粘性的”。即在执行一次新的分配之前, 考虑上一次分配的结果,尽量少的调整分配的变动,可以节省大量的开销。
- 粘性分区是 Kafka 从 0.11.x 版本开始引入这种分配策略,首先会尽量均衡的放置分区 到消费者上面,在出现同一消费者组内消费者出现问题的时候,会尽量保持原有分配的分 区不变化。
示例 :设置主题为 first,7 个分区;准备 3 个消费者,采用粘性分区策略,并进行消费,观察 消费分配情况。然后再停止其中一个消费者,再次观察消费分配情况。
1、Sticky分区分配示例
注意:kafka-python3库中没有Sticky分区策略,以下的示例是JAVA示例
- 1、修改分区分配策略为粘性。
- 注意:3 个消费者都应该注释掉,之后重启 3 个消费者,如果出现报错,全部停止等 会再重启,或者修改为全新的消费者组。
// 修改分区分配策略
ArrayList<String> startegys = new ArrayList<>();
startegys.add("org.apache.kafka.clients.consumer.StickyAssignor");
properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, startegys);
- 2、使用同样的生产者发送 500 条消息。
- 可以看到会尽量保持分区的个数近似划分分区。
2、Sticky 分区分配再平衡示例
1、停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内)。
- 1 号消费者:消费到 2、5、3 号分区数据。
- 2 号消费者:消费到 4、6 号分区数据。
- 0 号消费者的任务会按照粘性规则,尽可能均衡的随机分成 0 和 1 号分区数据,分别 由 1 号消费者或者 2 号消费者消费。
说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需 要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。
2、再次重新发送消息观看结果(45s 以后)。
- 1 号消费者:消费到 2、3、5 号分区数据。
- 2 号消费者:消费到 0、1、4、6 号分区数据。
说明:消费者 0 已经被踢出消费者组,所以重新按照粘性方式分配。
5、offset 位移
说明:kafka 0.9版本之前。consumer默认将offset保存在zookeeper中,从0.9版本开始,consumer默认将offset保存在kafka一个内置的topic中,该topic为__consumer_offsets
__consumer_offsets :里面采用 key 和 value 的方式存储数据。key 是 group.id+topic+ 分区号,value 就是当前 offset 的值。每隔一段时间,kafka 内部会对这个 topic 进行 compact,也就是每个 group.id+topic+分区号就保留最新数据。
5.1、自动提交 offset
- 自动提交offset的相关参数(JAVA):
- enable.auto.commit:是否开启自动提交offset功能,默认是true
- auto.commit.interval.ms:自动提交offset的时间间隔,默认是5s
- 自动提交offset的相关参数(Python):
'enable_auto_commit': True,
'auto_commit_interval_ms': 5000,
代码示例(Python)
# 设置自动提交
enable_auto_commit = True
# 设置提交时间周期1000ms
auto_commit_interval_ms = 1000
consumer = KafkaConsumer(*topics,
bootstrap_servers=["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"],
group_id=group_id,
partition_assignment_strategy=partition_assignment_strategy,
enable_auto_commit=enable_auto_commit,
auto_commit_interval_ms=auto_commit_interval_ms
)
5.2、手动提交 offset
- 虽然自动提交offset十分简单便利,但由于其是基于时间提交的,开发人员难以把握offset提交的时机。因 此Kafka还提供了手动提交offset的API。
- 手动提交offset的方法有两种:分别是commitSync(同步提交)和commitAsync(异步提交)。两者的相 同点是,都会将本次提交的一批数据最高的偏移量提交;不同点是,同步提交阻塞当前线程,一直到提交成 功,并且会自动失败重试(由不可控因素导致,也会出现提交失败);而异步提交则没有失败重试机制,故 有可能提交失败。
- commitSync(同步提交):必须等待offset提交完毕,再去消费下一批数据
- commitAsync(异步提交) :发送完提交offset请求后,就开始消费下一批数据了。
1、同步提交 offset
- 由于同步提交 offset 有失败重试机制,故更加可靠,但是由于一直等待提交结果,提 交的效率比较低。以下为同步提交 offset 的示例。
consumer_config = {
'bootstrap_servers': ["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"],
'group_id': group_id,
'enable_auto_commit': False
}
consumer = KafkaConsumer(*topics, **consumer_config)
# 设置offset同步提交
consumer.commit()
2、异步提交 offset
- 虽然同步提交 offset 更可靠一些,但是由于其会阻塞当前线程,直到提交成功。因此 吞吐量会受到很大的影响。因此更多的情况下,会选用异步提交 offset 的方式。
- 以下为异步提交 offset 的示例:
consumer_config = {
'bootstrap_servers': ["170.22.70.174:9092", "170.22.70.178:9092", "170.22.70.179:9092"],
'group_id': group_id,
'enable_auto_commit': False
}
consumer = KafkaConsumer(*topics, **consumer_config)
# 设置offse异步提交
consumer.commit_async()
5.3、指定 Offset 消费
- auto.offset.reset = earliest | latest | none 默认是 latest。(JAVA);参数:auto_offset_reset 默认是 latest。(Python)
- 当 Kafka 中没有初始偏移量(消费者组第一次消费)或服务器上不再存在当前偏移量 时(例如该数据已被删除),该怎么办?
- earliest:自动将偏移量重置为最早的偏移量,--from-beginning。
- latest(默认值):自动将偏移量重置为最新偏移量。
- none:如果未找到消费者组的先前偏移量,则向消费者抛出异常。
1、任意指定 offset 位移开始消费
assignment = consumer.assignment()
while len(assignment) == 0:
consumer.poll() # 获取分区分配情况
assignment = consumer.assignment()
for partition in assignment:
consumer.seek(partition, 600) # 设置偏移量为 600,
2、指定时间消费
在生产环境中,会遇到最近消费的几个小时数据异常,想重新按照时间消费。 例如要求按照时间消费前一天的数据,就需要指定时间消费。
assignment = consumer.assignment()
while len(assignment) == 0:
consumer.poll() # 获取分区分配情况
assignment = consumer.assignment()
# 指定从什么时间开始消费
assign_time = int(time.time() - 24*60*60) * 1000
for partition in assignment:
timestamps = {}
timestamps[partition] = assign_time
# 通过指定的时间戳,获取每个分区中时间戳对应offset
topic_partition_timestamp = consumer.offsets_for_times(timestamps)
for topic_partition, timestamps_offset in topic_partition_timestamp.items():
if timestamps_offset and timestamps_offset:
# 通过获取到与时间戳对应的offset,然后指定每个分区从offset开始消费
consumer.seek(topic_partition, timestamps_offset[0])
6、数据积压
如果消费端出现数据积压问题,可能是以下两个原因导致的:
- 1、如果是kafka消费能力不足,则可以考虑增加topic的分区数,并且同时提升消费组的消费者梳理,消费者数=分区数。
- 2、如果是消费者处理速度比生产速度快,也会造成数据积压,提高每批次拉取的数量。
通过以下两个参数调整: