在做LeetCode第3题的时候,用到了DP,但是自己对DP还是不了解,所以翻开算法导论,开始看动态规划喽,学好动态规划,走遍天下都不怕。
- 钢管切割
对于一根长n米的钢管,每个长度的价格不一样,对于长i米的钢管,价格为p[i],价格表如下所示:
现在问题是,给你一根长为n的钢管,你怎么切割,使得最后总价格最高。
比如:长度为4米的钢管,我们有8种方案,也就是对应着中间3段切不切的排列组合,所以有2^3=8种方案。(4),(1,3),(1,1,2),(1,1,1,1),(2,1,1),(2,2),(3,1),(1,2,1)。
然后比较得出总价最高的方案。
动态规划,意味着解决n的问题,需要解决n-1的问题,获取最优解,需要最优子方方案,也就是最优子结构:问题的最优解由相关子问题的最优解组合而成,而这些子问题可以独立求解。
所以我们可以得到公式:r[n] = max(p[i] + r[n-i]) ,i=1 to n。
所以自底向上的DP算法:
int dp(int a[], int n) {
int *r = new int[n];
r[0] = 0;
int q = 0;
for (int i = 1; i < n; i++) {
q = 0;
for (int j = i; j > 0; j--) {
q = max(q,a[j] + r[i-j]);
}
r[i] = q;
}
return r[n-1];
}
3.10 最长回文子字符串
问题:给字符串s,输出最长的回文子字符串。比如‘abcdcbw’,最长回文子字符串‘bcdcb’。
思路:最好的方法是马拉车算法,但是这里希望都用DP。设dp[i][j]为Si-Sj是否回文,则dp[i][j] = (Si==Sj && dp[i+1][j-1]),dp[i][i] = true;
string longestPalindrome(string s) {
int len = s.size();
bool dp[len][len];
dp[len][len] = {false};
int longest = 0;
int left = 0;
for (int i = 0; i < len; i++) {
for (int j = 0; j < i; j++) {
dp[j][i] = (s[i] == s[j] && (dp[j + 1][i - 1] || i - j < 2));
if (dp[j][i] && longest < i - j + 1) {
longest = i - j + 1;
left = j;
}
}
dp[i][i] = true;
}
return s.substr(left,longest);
}
3.27最长公共子串
思路1:BF暴力搜索。两个字符串s1,s2,比较s1[i]和s2[j],如果相等,则比较s[i+1],s[j+1],循环下去,记录开始位置和长度,最后返回。
string longestCommonSubstring(string s1,string s2) {
int start;
int end;
int longestNum;
int m = s1.size();
int n = s2.size();
if (m == 0 || n == 0) {
return "";
}
for (int i = 0; i < m; i++) {
int k = i;
int count = 0;
for (int j = 0; j < n; j++) {
if (s1[k] == s2[j]) {
count++;
k++;
}
else {
if (count > longestNum) {
longestNum = count;
start = i;
end = j - 1;
}
break;
}
}
}
return s1.substr(start,longestNum);
}
思路2:DP动态规划。dp[i][j] 为bool型数组,表示以s1[i]和s2[j]为最后元素的子串,是否公共。dp[i][j] = (s[i] == s[j] ? dp[i-1][j-1]+1 : 0)
string longestCommonSubstring1(string s1,string s2) {
int m = s1.size();
int n = s2.size();
vector<vector<int>> dp(m,vector<int>(n,0));
int longest = 0;
int end = 0;
for (int i = 0; i < m; i++) {
if (s1[i] == s2[0]) dp[i][0] = 1;
}
for (int j = 0; j < n; j++) {
if (s2[j] == s1[0]) dp[0][j] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = (s1[i] == s2[j] ? dp[i-1][j-1]+1 : 0);
if (dp[i][j] > longest) {
longest = dp[i][j];
end = i;
}
}
}
return s1.substr(end - longest + 1,longest);
}