Key Set

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 533    Accepted Submission(s): 326

Problem Description
soda has a set S with n integers {1,2,,n}. A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets ofS are key set.

Input
There are multiple test cases. The first line of input contains an integerT(1T105), indicating the number of test cases. For each test case:

The first line contains an integer n(1n109), the number of integers in the set.

Output
For each test case, output the number of key sets modulo 1000000007.

Sample Input
4 1 2 3 4

Sample Output
0 1 3 7

#include<stdio.h>
int main()
{
int t,n;long long x,s;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
--n;x=2;s=1;
while(n>=1)
{
x%=1000000007;
if(n&1)//是奇数，就分离出来一个
{
s*=x;//单独计算那一部分
s%=1000000007;
--n;//减去已经计算过的
}
if(n)// n 如果不为零，那么一定是偶数
{
x=x*x;//增倍...
n>>=1;//折半
x%=1000000007;
}
}
printf("%lld\n",s-1);//注意减 1
}
return 0;
}

#include<stdio.h>
#define mod 1000000007
void ksm(int a,int b)
{
long long x=a,s=1;
while(b>0)
{
if(b&1)
{
s=(s*x)%mod;
}
b>>=1;
x=(x*x)%mod;
}
printf("%lld\n",s-1);
}
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
ksm(2,n-1);
}
return 0;
}