Hdu 5363 Key Set【快速幂运算】

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/liuke19950717/article/details/47343483

Key Set

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 533    Accepted Submission(s): 326


Problem Description
soda has a set S with n integers {1,2,,n}. A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets ofS are key set.
 

Input
There are multiple test cases. The first line of input contains an integerT(1T105), indicating the number of test cases. For each test case:

The first line contains an integer n(1n109), the number of integers in the set.
 

Output
For each test case, output the number of key sets modulo 1000000007.
 

Sample Input
4 1 2 3 4
 

Sample Output
0 1 3 7

给出一个数,求出包含 1 到这个数的集合,有多少集合内部元素的和为偶数的非空子集,输出这个数对指定的数取模的结果......

数学的集合元素的子集问题,比较简单的就可以推导出来,一共有 2 的 n-1 次方 减1个子集,然后求模.....

考察的快速幂运算求模方法,快速求幂运算,用的是二分的思想,然后对中间过程求模运用的是同余定理,这些定理和方法都是最基本的数学的方法.....


#include<stdio.h>
int main()
{
    int t,n;long long x,s;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        --n;x=2;s=1;
        while(n>=1)
        {
            x%=1000000007;
            if(n&1)//是奇数,就分离出来一个
            {
                s*=x;//单独计算那一部分
                s%=1000000007;
                --n;//减去已经计算过的
            }
            if(n)// n 如果不为零,那么一定是偶数
            {
                x=x*x;//增倍...
                n>>=1;//折半
                x%=1000000007;
            }
        }
        printf("%lld\n",s-1);//注意减 1 
    }
    return 0;
}


好丑的代码,还是按模板写一个吧....

这样就比较清爽了.....

#include<stdio.h>
#define mod 1000000007
void ksm(int a,int b)
{
    long long x=a,s=1;
    while(b>0)
    {
        if(b&1)
        {
            s=(s*x)%mod;
        }
        b>>=1;
        x=(x*x)%mod;
    }
    printf("%lld\n",s-1);
}
int main()
{
    int t,n;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        ksm(2,n-1);
    }
    return 0;
}



阅读更多

没有更多推荐了,返回首页