Nick's company employed n people. Now Nick needs to build a tree hierarchy of «supervisor-surbodinate» relations in the company (this is to say that each employee, except one, has exactly one supervisor). There are m applications written in the following form: «employeeai is ready to become a supervisor of employee bi at extra cost ci». The qualification qj of each employee is known, and for each application the following is true: qai > qbi.
Would you help Nick calculate the minimum cost of such a hierarchy, or find out that it is impossible to build it.
The first input line contains integer n (1 ≤ n ≤ 1000) — amount of employees in the company. The following line contains n space-separated numbers qj (0 ≤ qj ≤ 106)— the employees' qualifications. The following line contains number m (0 ≤ m ≤ 10000) — amount of received applications. The following m lines contain the applications themselves, each of them in the form of three space-separated numbers: ai, bi and ci (1 ≤ ai, bi ≤ n, 0 ≤ ci ≤ 106). Different applications can be similar, i.e. they can come from one and the same employee who offered to become a supervisor of the same person but at a different cost. For each application qai > qbi.
Output the only line — the minimum cost of building such a hierarchy, or -1 if it is impossible to build it.
4 7 2 3 1 4 1 2 5 2 4 1 3 4 1 1 3 5
11
3 1 2 3 2 3 1 2 3 1 3
-1
In the first sample one of the possible ways for building a hierarchy is to take applications with indexes 1, 2 and 4, which give 11 as the minimum total cost. In the second sample it is impossible to build the required hierarchy, so the answer is -1.
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=0x3f3f3f3f;
int result(int n,int x[])
{
int sum=0,kase=1;
for(int i=1;i<=n;++i)
{
if(x[i]==maxn)
{
sum-=maxn;
if(!kase)
{
return -1;
}
kase=0;
}
sum+=x[i];
}
return sum;
}
int main()
{
int n;
while(~scanf("%d",&n))
{
int temp,x[1005]={0};
for(int i=1;i<=n;++i)
{
scanf("%d",&temp);
x[i]=maxn;
}
int m,a,b,c;
scanf("%d",&m);
for(int i=0;i<m;++i)
{
scanf("%d%d%d",&a,&b,&c);
if(x[b]>c)//留下最少花费的
{
x[b]=c;
}
}
printf("%d\n",result(n,x));
}
return 0;
}