基础练习 2n皇后问题

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Liukx940818/article/details/44225481
问题描述
  给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、同一列或同一条对角线上。问总共有多少种放法?n小于等于8。
输入格式
  输入的第一行为一个整数n,表示棋盘的大小。
  接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇后。
输出格式
  输出一个整数,表示总共有多少种放法。
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
2
样例输入
4
1 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
0

思路:
       回溯法,八皇后问题变形,Dfs与八皇后一样,详细请见回溯法。八皇后问题只需要找出解的个数,这道题还需要把解的路径记录下来,然后假设白皇后在第i行,则黑皇后只能在第i+x(x=0、1、...)行,如果白皇后和黑皇后所在的两行不是互斥(白皇后能放置的行黑皇后不能放置为互斥)行,则解的个数加一,即排除白皇后和黑皇后虽然在第一行放置的是不同列,但是后续几行可能放置在同一个格子的情况,得到的解乘2即是答案。
       注意:vis[][]的数组一定要开的足够大。

#include <cstdio>
#include <cstring>

int tot, c[10], n, num;                         
int map[10][10];
int vis[100][10];

void Dfs(int cur)
{
	if(cur == n)                           
	{ 
		for(int f = 0; f < n; f++)
			vis[tot][f] = c[f];
		tot++; 
	}
	else
	{
		for(int i = 0; i < n; i++)         
		{
			if(map[cur][i] == 1)
			{
				int ok = 1;
				c[cur] = i;                    
				for(int j = 0; j < cur; j++)   
				{
					if(c[cur] == c[j] || cur - c[cur] == j - c[j] || cur + c[cur] == j + c[j])
					{
						ok = 0;
						break; 
					} 
				} 
				if(ok)
					Dfs(cur + 1);
			} 
		} 
	}
}

bool isMutexLine(int a[], int b[]) //判断两行是否互斥
{
	for(int i = 0; i < n; i++)
	{
		if(a[i] == b[i])    //黑白皇后在同一格
			return true;
	}	
	return false;
} 

void Search(int x)               
{
	for(int q = 0; q < x; q++)
	{
		for(int w = q + 1; w < x; w++)
			if(!isMutexLine(vis[q], vis[w]))
				num++;
	}
	printf("%d", 2 * num);
}

int main()
{
//	freopen("input6.txt", "r", stdin);
//	freopen("output777.txt", "w", stdout); 
	int i, j;
	scanf("%d", &n);
	for(i = 0; i < n; i++)
		for(j = 0; j < n; j++)
			scanf("%d", &map[i][j]);
	memset(c, -1, sizeof(c));
	memset(vis, -1, sizeof(vis));
	tot = 0;
	num = 0;
	Dfs(0);
	Search(tot);
//	printf("%d\n", tot);
//	printf("%d\n", ans);
	return 0;
}



展开阅读全文

蓝桥杯之基础练习 (2n皇后问题 )互相学习共同进步。

09-30

问题描述rn  给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、同一列或同一条对角线上。问总共有多少种放法?n小于等于8。rn输入格式rn  输入的第一行为一个整数n,表示棋盘的大小。rn  接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇后。rn输出格式rn  输出一个整数,表示总共有多少种放法。rn样例输入rn4rn1 1 1 1rn1 1 1 1rn1 1 1 1rn1 1 1 1rn样例输出rn2rn样例输入rn4rn1 0 1 1rn1 1 1 1rn1 1 1 1rn1 1 1 1rn样例输出rn0rnrn[color=#FF0000][b][code=c]rn#include"stdio.h"rn#include"stdlib.h"rn#define N 10rnint Queen[N][N]; //Queen[i][j]=0表示不可放皇后,1可放皇后,2表示已放黑皇后,3表示已放白棋 rnint sum;rnint n; rnint black=2,white=3; rnbool Judge_Queen(int i,int j,int k)rnrn int r,c; //r.c分别表示行和列 rn //从上下左右、正对角线、服对角线判断是否可放皇后 rn for(r=0;r=0&&c>=0;r--,c--) //判断左上角是否已放皇后rn if(Queen[r][c]==k) rn return false; rn for(r=i+1,c=j+1;r=0&&c=0;r++,c--) //左下角 rn if(Queen[r][c]==k) rn return false; rn return true;rn rnrnvoid DLS(int i,int T) //先找黑皇后,再找白皇后 rnrn int j;rn if(i>=n)rn rn if(!T) //黑白皇后都找到了 rn rn sum++;rn T=1;rn return;rn rn T=0; //只找到了黑皇后 ,继续找白皇后 rn i=0;rn rn if(T) //寻找是否满足黑皇后 rn rn for(j=0;j 论坛

没有更多推荐了,返回首页