问题描述
如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。
输入格式
输入包含两个正整数,K和L。
输出格式
输出一个整数,表示答案对1000000007取模后的值。
样例输入
4 2
样例输出
7
数据规模与约定
对于30%的数据,KL <= 106;
对于50%的数据,K <= 16, L <= 10;
对于100%的数据,1 <= K,L <= 100。
思路:
用dp[l][k]存储每种情况的个数,l表示位数,k表示以k为首的情况的个数,第一行dp[1][k]初始化为1(1位数)。
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int maxl = 105;
const int maxk = 105;
const int mod = 1000000007;
int dp[maxl][maxk];
int main()
{
int l, k, i, j, w, sum = 0;
scanf("%d%d", &k, &l);
for(i = 0; i < k; i++)
dp[1][i] = 1;
for(i = 2; i <= l; i++)
{
for(j = 0; j < k; j++)
{
for(w = 0; w < k; w++)
{
if(abs(w - j)!=1)
{
dp[i][j] = (dp[i][j]%mod + dp[i - 1][w]%mod)%mod;
}
}
}
}
for(i = 1; i < k; i++)
{
sum = sum%mod + dp[l][i]%mod;
}
printf("%d\n", sum % mod);
return 0;
}