[acwing周赛复盘] 第 93 场周赛20230304

一、本周周赛总结

  • 彩笔了,只AC一题。
  • T1模拟,整除向上取整。
  • T2 BFS。这题应该是能AC的,但是一直TLE,就是样例都TLE,特判了也TLE。最后发现把前边一堆import删了就ac了。。看来import是加时间的。
  • T3 分治/01字典树/异或字典树。
  • 在这里插入图片描述

二、 4867. 整除数

链接: 4867. 整除数

1. 题目描述

在这里插入图片描述

2. 思路分析

  • 题目要求整除,且大于n,即最小是n+1的能整除k的数。显然是ceil((n+1) / k)

3. 代码实现

# Problem: 整除数
# Contest: AcWing
# URL: https://www.acwing.com/problem/content/4870/
# Memory Limit: 256 MB
# Time Limit: 1000 ms

import sys

RI = lambda: map(int, sys.stdin.buffer.readline().split())

#       ms
def solve():
    n, k = RI()
    n += 1
    print((n + k - 1) // k * k)


if __name__ == '__main__':
    solve()

三、 4868. 数字替换

链接: 4868. 数字替换

1. 题目描述

在这里插入图片描述

2. 思路分析

这题的教训是:如果在acw卡常,先把import都删干净!

  • 看完题应该立刻想到一些特例,然后BFS即可。
  • 特例:如果x是0或者1,那么n只能是1,否则返回-1.
  • 如果x里有0,那么可以一步到一位数。
  • 只有0才能让数字位数变小,且只能变到一位,特判一下存在0且n==1的情况
  • 其它情况只要n<len(x) 一定无解。
  • 然后bfs即可。

3. 代码实现

# Problem: 数字替换
# Contest: AcWing
# URL: https://www.acwing.com/problem/content/4871/
# Memory Limit: 256 MB
# Time Limit: 1000 ms

import sys
from collections import *

RI = lambda: map(int, sys.stdin.buffer.readline().split())
RS = lambda: map(bytes.decode, sys.stdin.buffer.readline().strip().split())
RILST = lambda: list(RI())
DEBUG = lambda *x: sys.stderr.write(f'{str(x)}\n')




#       ms
def solve():
    n, x = RI()
    ans = 0
    s = str(x)
    if len(s) == n:
        return print(0)
    if '0' in s and n == 1:
        return print(1)
    if n < len(s):
        return print(-1)
    if max(s) == '1':
        return print(-1)
    q = deque([x])
    vis = {x}
    while q:
        ans += 1
        for _ in range(len(q)):
            x = q.popleft()
            s = str(x)
            for i in s:
                y = x * int(i)
                if len(str(y)) == n:
                    return print(ans)
                if y not in vis:
                    vis.add(y)
                    q.append(y)
    print(-1)


if __name__ == '__main__':
    solve()

四、4869. 异或值

链接: 4869. 异或值

1. 题目描述

在这里插入图片描述

2. 思路分析

这题01字典树或者分治都可以。
  • 其实应该立刻想到01字典树的,因为是批量异或的最大值问题。
  • 假设我们要异或的数字是x,最终得到最大值是mx。
  • 建完树后,从高位向下逐层考虑:
    • 如果本层里只有1,那可以让x这一位是1,则mx的这一位可以是0。那么我们往1走,返回递归后的结果即可。
    • 如果只有0,同理。往0走即可。
    • 如果01都有,那么x这位无论是几,mx这位都会取到1,那么我们往01走都要试一下,取那个最小的;别忘记加上本层的1。
  • 恶心之处在于,做这题时,用封装版的TLE了,拆出来后才过的,但也7000ms。

  • 试了下,直接分治是更快的。1700ms。
  • 直接按位考虑,把数字按本位01分组。讨论方法同上。
    • 若只有1的组,那就递归1即可。
    • 若只有0的组,递归0即可。
    • 若都有,则mx这位必是1,递归两边取最小。

3. 代码实现

# Problem: 异或值
# Contest: AcWing
# URL: https://www.acwing.com/problem/content/4872/
# Memory Limit: 256 MB
# Time Limit: 1000 ms

import sys

RI = lambda: map(int, sys.stdin.buffer.readline().split())
RS = lambda: map(bytes.decode, sys.stdin.buffer.readline().strip().split())
RILST = lambda: list(RI())
DEBUG = lambda *x: sys.stderr.write(f'{str(x)}\n')

MOD = 10 ** 9 + 7
PROBLEM = """
"""


class TrieXor:
    def __init__(self, nums=None, bit_len=31):
        # 01字典树,用来处理异或最值问题,本模板只处理数字最低的31位
        # 用nums初始化字典树,可以为空
        self.trie = {}
        self.cnt = 0  # 字典树插入了几个值
        if nums:
            for a in nums:
                self.insert(a)
        self.bit_len = bit_len

    def insert(self, num):
        # 01字典树插入一个数字num,只会处理最低bit_len位。
        cur = self.trie
        for i in range(self.bit_len - 1, -1, -1):
            nxt = (num >> i) & 1
            if nxt not in cur:
                cur[nxt] = {}
            cur = cur[nxt]
            cur[3] = cur.get(3, 0) + 1  # 这个节点被经过了几次
        cur[5] = num  # 记录这个数:'#'或者'end'等非01的当key都行;这里由于key只有01因此用5
        self.cnt += 1

    def find_max_xor_num(self, num):
        # 计算01字典树里任意数字异或num的最大值,只会处理最低bit_len位。
        # 贪心的从高位开始处理,显然num的某位是0,对应的优先应取1;相反同理
        cur = self.trie
        ret = 0
        for i in range(self.bit_len - 1, -1, -1):
            if (num >> i) & 1 == 0:  # 如果本位是0,那么取1才最大;取不到1才取0
                if 1 in cur:
                    cur = cur[1]
                    ret += ret + 1
                else:
                    cur = cur.get(0, {})
                    ret <<= 1
            else:
                if 0 in cur:
                    cur = cur[0]
                    ret += ret + 1
                else:
                    cur = cur.get(1, {})
                    ret <<= 1
        return ret

    def find_max_xor_any(self):
        """计算所有数字异或异或同一数字x时,结果里max的最小值"""

        def dfs(cur, bit):  # 计算当前层以下能取到的最小的最大值
            if bit < 0:
                return 0
            if 0 not in cur:  # 如果这层都是1,那么可以使x的这层是1,结果里的这层就是0,递归下一层即可。
                return dfs(cur[1], bit - 1)
            elif 1 not in cur:  # 如果这层都是0,使x这层是0,递归下一层。
                return dfs(cur[0], bit - 1)
            # 如果01都有,那么x这层不管是几,结果最大值里这层都是1,那么考虑走1还是走0方向,取min后加上本层的值。
            return min(dfs(cur[0], bit - 1), dfs(cur[1], bit - 1)) + (1 << bit)

        return dfs(self.trie, self.bit_len - 1)

    def count_less_than_limit_xor_num(self, num, limit):
        # 计算01字典树里有多少数字异或num后小于limit
        # 由于计算的是严格小于,因此只需要计算三种情况:
        # 1.当limit对应位是1,且异或值为0的子树部分,全部贡献。
        # 2.当limit对应位是1,且异或值为1的子树部分,向后检查。
        # 3.当limit对应为是0,且异或值为0的子树部分,向后检查。
        # 若向后检查取不到,直接剪枝break
        cur = self.trie
        ans = 0
        for i in range(self.bit_len - 1, -1, -1):
            a, b = (num >> i) & 1, (limit >> i) & 1
            if b == 1:
                if a == 0:
                    if 0 in cur:  # 右子树上所有值异或1都是0,一定小于1
                        ans += cur[0][3]
                    cur = cur.get(1)  # 继续检查右子树
                    if not cur: break  # 如果没有1,即没有右子树,可以直接跳出了
                if a == 1:
                    if 1 in cur:  # 右子树上所有值异或1都是0,一定小于1
                        ans += cur[1][3]
                    cur = cur.get(0)  # 继续检查左子树
                    if not cur: break  # 如果没有0,即没有左子树,可以直接跳出了
            else:
                cur = cur.get(a)  # limit是0,因此只需要检查异或和为0的子树
                if not cur: break  # 如果没有相同边的子树,即等于0的子树,可以直接跳出了
        return ans


#    封装成类卡常真是吐了   ms
def solve_tle():
    n, = RI()
    a = RILST()
    trie = TrieXor(bit_len=30)
    for x in a:
        trie.insert(x)
    ans = trie.find_max_xor_any()
    print(ans)


#   7224    ms
def solve1():
    n, = RI()
    a = RILST()
    trie = {}
    for x in a:
        cur = trie
        for i in range(29, -1, -1):
            nxt = (x >> i) & 1
            if nxt not in cur:
                cur[nxt] = {}
            cur = cur[nxt]

    def dfs(cur, bit):  # 计算当前层以下能取到的最小的最大值
        if bit < 0:
            return 0
        if 0 not in cur:  # 如果这层都是1,那么可以使x的这层是1,结果里的这层就是0,递归下一层即可。
            return dfs(cur[1], bit - 1)
        elif 1 not in cur:  # 如果这层都是0,使x这层是0,递归下一层。
            return dfs(cur[0], bit - 1)
        # 如果01都有,那么x这层不管是几,结果最大值里这层都是1,那么考虑走1还是走0方向,取min后加上本层的值。
        return min(dfs(cur[0], bit - 1), dfs(cur[1], bit - 1)) + (1 << bit)

    ans = dfs(trie, 29)
    print(ans)


#     1725   ms
def solve():
    n, = RI()
    a = set(RILST())

    def dfs(a, bit):  # 计算当前层以下能取到的最小的最大值
        if bit < 0:
            return 0
        x, y = [], []
        t = 1 << bit
        for v in a:
            if v & t:
                x.append(v)
            else:
                y.append(v)
        if not x: return dfs(y, bit - 1)
        if not y: return dfs(x, bit - 1)
        # 如果01都有,那么x这层不管是几,结果最大值里这层都是1,那么考虑走1还是走0方向,取min后加上本层的值。
        return min(dfs(x, bit - 1), dfs(y, bit - 1)) + t

    print(dfs(a, 29))


if __name__ == '__main__':
    solve()

六、参考链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值