**数据同化,指的是通过各种数学物理手段,将多源观测数据的信息,尽可能完整、准确地整合到一个空间分布均匀,时间序列连续,物理意义合理的气象场当中,为数值天气预报模式提供更加精准的初始场。
传统的资料同化方法主要为各种空间和时间插值,包括人工填图插值、Cressman插值、牛顿松弛逼近法(nudging)、最优插值等等。近二十年来,随着计算机算力的增强,各种计算量更大、同化效果更好的技术也应运而生,比如三维变分(3D-Var)、四维变分(4D-Var)、卡尔曼滤波等由大数据驱动的算法。
观测资料同化如同制作一份描述大气初始状态的原材料,也就是初值,经过数值预报模式的运算“加工”,未来天气精细化预报的“饭菜”就出炉了。
观测资料同化作为智慧气象的基础,其最新的GRAPES全球四维变分资料同化系统(简称GRAPES全球4D-Var)**历经十年研发,投入业务化运行,大大提高了大尺度天气系统预报的稳定性和准确度,成为全球预报的坚实基础。
(GRAPES全球3D-Var)在三维变分资料同化中,多个时刻的大气状态数据,如温度、湿度、气压、风速等,被假定为同一时刻,通过数值预报模式运算,得出未来某一时刻的天气状态。而四维变分资料同化,则是在三维变分资料同化的基础上,加入时间维度信息,把多个时刻的大气状态数据联系起来,找到数据之间的变化关系,再以此通过模式运算推算出未来天气。
正是基于对天气数据间变化关系的了解,通过四维变分同化
GRAPES全球4D-Var
最新推荐文章于 2025-02-11 11:25:47 发布