语音识别dome

耳蜗实质上相当于一个滤波器组,耳蜗的滤波作用是在对数频率尺度上进行的,在1000HZ下,人耳的感知能力与频率成线性关系;而在1000HZ以上,人耳的感知能力与频率不构成线性关系,而更偏向于对数关系,这就使得人耳对低频信号比高频信号更敏感。Mel频率的提出是为了方便人耳对不同频率语音的感知特性的研究。频率Mel频率的转换公式为:

              语音特征参数MFCC的提取及识别   

     MFCC在一定程度上模拟了人耳对语音的处理特点,应用了人耳听觉感知方面的研究成果,采用这种技术语音识别系统的性能有一定提高。

MFCC参数的提取   语音特征参数MFCC的提取及识别

1、  预加重处理

   预加重处理其实是一个高通滤波器,该高通滤波顺的传递函数为:

              语音特征参数MFCC的提取及识别          

其中的取值为0.97,该高通滤波器作用是滤去低频,使语音信号的高频特性更加突现。

2、  分帧及加窗处理

由于语音信号只在较短的时间内呈现平稳性(一般认为10-30ms),因此将语音信号划分为一个一个的短时段即一帧。同时为避免丢失语音信号的动态信息,相邻帧之间要有一段重叠区域,重叠区域一段为帧长的1/21/3。然后再将每帧乘上窗函数,以增加每帧左端和右端的连续性。

3、  各帧信号的FFT变换

对分帧加窗后的各帧信号进行FFT变换得到各帧的频谱。并对语音信号的频谱取模平方得到语音信号的功率谱。

4、  三角滤波器系数的求取

定义若干个带通三角滤波器(k)0<=m<=MM为滤波器个数,其中心频率为f(m),每个带通三角滤波器的频率响应为

                        语音特征参数MFCC的提取及识别

且满足Mel(f(m))-Mel(f(m-1))=Mel(f(m+1))-Mel(f(m))

求得滤波系数为m(i),i=1,…,pp为滤波器阶数

5、  三角滤波并进行离散余弦变换DCT

        语音特征参数MFCC的提取及识别

 

C(i)即为所要求提取的特征参数。

特征参数的识别

特征参数的识别主要采用BP神经网络算法进行预测,而在预测前需要用一定数量的样本对网络进行训练,使网络具有联想记忆和预测能力。

网络训练步骤如下:

(1)       网络初始化。确定网络输入层、隐层、输出层数目,输出层到隐层的连接权值语音特征参数MFCC的提取及识别及隐层到输出层的连接权值语音特征参数MFCC的提取及识别,同时初始化隐层阈值a和输出层阈值b;

(2)       隐层的输出计算。隐层输出式中,l为隐含层节点数;f为隐含层激励函数,本实验选取函数为:

        语音特征参数MFCC的提取及识别

(3)       输出层输出计算。根据隐含层输出H,连接权值和阈值b,计算BP神经网络预测输出O.

        语音特征参数MFCC的提取及识别

(4)       误差计算。根据网络预测输出O和期望输出Y,计算网络预测误差e.

                语音特征参数MFCC的提取及识别

(5)       权值更新。根据网络预测误差e更新网络连接权值,

语音特征参数MFCC的提取及识别
      
  其中,语音特征参数MFCC的提取及识别为学习速率。

(6)       阈值更新。根据网络预测误差e更新网络节点阈值a,b.

语音特征参数MFCC的提取及识别

(7)       判断算法迭代是否结束,若没有结束,返回步骤(2)。

BP神经网络分类

         用训练好的BP神经网络分类语音特征信号,根据分类结果分析BP神经网络分类能力。

 

将四种音乐风格的数据各1500组共6000MEL特征数据随机抽取4000组进行训练网络,剩下的2000组特征向量进行辨识,得到各类风格的正确率如下:

        rightridio =

             1.0000    0.9261    0.9129    0.8399

下图为BP网络误差:

语音特征参数MFCC的提取及识别

MATLAB程序如下:

clear;
clc;
%%%%%%%%采集的四种音乐各500000个数据%%%%%%%%%%%%%%%%%%%%%
load f:\课程\voice_reco\c1  x1
load f:\课程\voice_reco\c2  x2
load f:\课程\voice_reco\c3  x3
load f:\课程\voice_reco\c4  x4
%%%%%%%%%%%%%%%对语音信号进行预加重处理%%%%%%%%%%%%%%%%%%
len=length(x1);
heigt=0.98;
for i=2:len
    x1(i)=x1(i)-heigt*x1(i-1);
end
for i=2:len
    x2(i)=x2(i)-heigt*x2(i-1);
end
for i=2:len
    x3(i)=x3(i)-heigt*x3(i-1);
end
for i=2:len
    x4(i)=x4(i)-heigt*x4(i-1);
end
%%%%%%%%%%%%%%MEL三角滤波参数%%%%%%%%%%%%%%%%%%%%%%%%%%%
fh=20000;
melf=2595*log(1+fh/700);
M=24;
i=0:25;
f=700*(exp(melf/2595*i/(M+1))-1);
N=256;

for m=1:24
    for k=1:256
        x=fh*k/N;
        if (f(m)<=x)&&(x<=f(m+1))
            F(m,k)=(x-f(m))/(f(m+1)-f(m));
        else if (f(m+1)<=x)&&(x<=f(m+2))
                F(m,k)=(f(m+2)-x)/(f(m+2)-f(m+1));
            else
                F(m,k)=0;
            end
        end
    end
end
m=N/2;
for k=1:12
  n=0:23;
  dctcoef(k,:)=cos((2*n+1)*k*pi/(2*24));
end
count=floor(length(x1)/m);
%%%%%%%%%%%%%%%四种语音的特征参数的求取%%%%%%%%%%%
c1=zeros(count,12);
for i=1:count-2
    x_frame=x1(m*(i-1)+1:m*(i-1)+N);
    Fx=abs(fft(x_frame));
    s=log(Fx.^2*F');
    c1(i,:)=s*dctcoef';
end
c1=zeros(count,12);
for i=1:count-2
    x_frame=x2(m*(i-1)+1:m*(i-1)+N);
    Fx=abs(fft(x_frame));
    s=log(Fx.^2*F');
    c2(i,:)=s*dctcoef';
end
c3=zeros(count,12);
for i=1:count-2
    x_frame=x3(m*(i-1)+1:m*(i-1)+N);
    Fx=abs(fft(x_frame));
    s=log(Fx.^2*F');
    c3(i,:)=s*dctcoef';
end
c4=zeros(count,12);
for i=1:count-2
    x_frame=x4(m*(i-1)+1:m*(i-1)+N);
    Fx=abs(fft(x_frame));
    s=log(Fx.^2*F');
    c4(i,:)=s*dctcoef';
end
%save c1 c1
%save c2 c2
%save c3 c3
%save c4 c5

%四个特征信号矩阵合成一个矩阵
data(1:1500,:)=c1(1:1500,:);
data(1501:3000,:)=c2(1:1500,:);
data(3001:4500,:)=c3(1:1500,:);
data(4501:6000,:)=c4(1:1500,:);
%%%%%%%%%%%特征信号第一列为所属类别%%%%%%%%%%%%%%
for i=1:6000
    if (i>=1)&&(i<=1500)
        data(i,1)=1;
    else if(i>=501)&&(i<=3000)
            data(i,1)=2;
        else if (i>=1001)&&(i<=4500)
                data(i,1)=3;
            else
                data(i,1)=4;
            end
        end
    end
end
       
%从1到2000间随机排序
k=rand(1,6000);
[m,n]=sort(k);

%输入输出数据
input=data(:,2:12);
output1 =data(:,1);

%把输出从1维变成4维
for i=1:6000
    switch output1(i)
        case 1
            output(i,:)=[1 0 0 0];
        case 2
            output(i,:)=[0 1 0 0];
        case 3
            output(i,:)=[0 0 1 0];
        case 4
            output(i,:)=[0 0 0 1];
    end
end

%随机提取1500个样本为训练样本,500个样本为预测样本
input_train=input(n(1:4000),:)';
output_train=output(n(1:4000),:)';
input_test=input(n(4001:6000),:)';
output_test=output(n(4001:6000),:)';

%输入数据归一化
[inputn,inputps]=mapminmax(input_train);

%% 网络结构初始化
innum=11;
midnum=12;
outnum=4;
 

%权值初始化
w1=rands(midnum,innum);
b1=rands(midnum,1);
w2=rands(midnum,outnum);
b2=rands(outnum,1);

w2_1=w2;w2_2=w2_1;
w1_1=w1;w1_2=w1_1;
b1_1=b1;b1_2=b1_1;
b2_1=b2;b2_2=b2_1;

%学习率
xite=0.1;
alfa=0.01;

%% 网络训练
for ii=1:10
    E(ii)=0;
    for i=1:1:4000
       %% 网络预测输出
        x=inputn(:,i);
        % 隐含层输出
        for j=1:1:midnum
            I(j)=inputn(:,i)'*w1(j,:)'+b1(j);
            Iout(j)=1/(1+exp(-I(j)));
        end
        % 输出层输出
        yn=w2'*Iout'+b2;
       
       %% 权值阀值修正
        %计算误差
        e=output_train(:,i)-yn;    
        E(ii)=E(ii)+sum(abs(e));
       
        %计算权值变化率
        dw2=e*Iout;
        db2=e';
       
        for j=1:1:midnum
            S=1/(1+exp(-I(j)));
            FI(j)=S*(1-S);
        end     
        for k=1:1:innum
            for j=1:1:midnum
                dw1(k,j)=FI(j)*x(k)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4));
                db1(j)=FI(j)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4));
            end
    

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值