蓝桥杯 ALGO-2 算法训练 最大最小公倍数

算法训练 最大最小公倍数  

时间限制:1.0s   内存限制:256.0MB

 

问题描述

已知一个正整数N,问从1~N中任选出三个数,他们的最小公倍数最大可以为多少。

 

输入格式

输入一个正整数N。

 

输出格式

输出一个整数,表示你找到的最小公倍数。

 

样例输入

9

 

样例输出

504

 

数据规模与约定

1 <= N <= 10^6

 

分析:此题事实上是要求不超过N的最大的三个互质数。

1)若N为奇数,则N​​​​​​​可写为N = 2k+1 ~ (k \ge 1),由于“相邻的两个自然数互质”和“相邻的两个奇数互质”,于是最大的三个互质数应当为2k-1, 2k, 2k+1,即N-2, N-1, N

2)若N​​​​​​​为偶数,则N​​​​​​​可写为N = 2k ~ (k \ge 2)。假若最大的三个互质数中包含了N = 2k,而2k2k-2有公因数2,所以可能的三个互质数为2k-3, 2k-1, 2k。但是,如果N为3的倍数,则NN - 3有公因数3,此时2k-3, 2k-1, 2k不可能互质,所以此时的互质数应该是N-3, N-2, N-1,这三个数(奇、偶、奇)一定互质。综上所述,当N为3的倍数时,最大的三个互质数为N-3, N-2, N-1;当N不为3的倍数时,最大的三个互质数为N-3, N-1, N

 

#include <stdio.h>

int main()
{
    long long int N;

    scanf("%lld", &N);

    if (N % 2 == 0)
    {
        if (N % 3 == 0)
            printf("%lld", (N - 3) * (N - 2) * (N - 1));
        else
            printf("%lld", (N - 3) * (N - 1) * N);
    }
    else
    {
        printf("%lld", (N - 2) * (N - 1) * N);
    }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值