图论范定理的证明 题目 解法 题目 证明:若一个简单图 G = ( V , E ) G=(V,E) G=(V,E)是点二连通的,且任意不相邻的两个节点u和v满足 m a x { d ( u ) , d ( v ) } ≥ n 2 , max\{d(u), d(v)\} \ge \frac{n}{2}, max{ d(u),d(v)}≥2n, 则图 G G G是一个哈密尔顿图。 解法 证:若不然,取 G G