我的第一篇文章——用闭包证明点二连通的图是一个哈密尔顿图

本文通过证明一个条件来展示点二连通的简单图如何满足成为哈密尔顿图的特性。内容涉及图论中的关键概念,包括点二连通性、最大度数条件和闭包原理的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图论范定理的证明

题目

证明:若一个简单图 G = ( V , E ) G=(V,E) G=(V,E)是点二连通的,且任意不相邻的两个节点u和v满足
m a x { d ( u ) , d ( v ) } ≥ n 2 , max\{d(u), d(v)\} \ge \frac{n}{2}, max{ d(u),d(v)}2n,
则图 G G G是一个哈密尔顿图。

解法

证:若不然,取 G G

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值