鸢尾花分类算法实现 java

该博客介绍了使用Java实现的鸢尾花数据集的贝叶斯分类算法。博主通过将数据集分为训练集和测试集,利用贝叶斯公式计算特征属于各类别的概率,以确定鸢尾花的类别。在测试数据上,算法达到76.7%的准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用的贝叶斯分类算法实现的,编程语言为java。是我本学期修的数据库与数据挖掘的课程的期末课程作业,算法本身不难,思路理清楚了很简单。

先看看鸢尾花(Iris)数据集(下图为数据集的部分截图),鸢尾花有setosa、Versicolor、Virginica3个类别,数据集中各个类别各50条数据,一共是150条数据记录,每条数据记录的前4个值分别表示鸢尾花的sepalLengthsepalWidth、petalLengthpetalWidth,第5个值是鸢尾花的类型。算法实现过程中将每个类别的前40条记录作为训练数据,进行分类模型的训练,每个类别的后10条数据作为测试数据,对分类模型的准确性进行判断。

算法基本思路:由概率论中先验概率后验概率的转换公式

Java中进行机器学习的鸢尾花分类实验通常涉及到以下几个步骤: 1. **数据准备**:首先,你需要导入经典的鸢尾花数据集,如Iris数据集,可以从UCI Machine Learning Repository或其他库下载,比如Weka或Apache Commons Math。 2. **数据预处理**:加载数据后,可能需要清洗、填充缺失值、标准化或归一化特征等操作,以便模型更好地理解和处理数据。 3. **选择算法**:对于二分类任务,可以考虑朴素贝叶斯、决策树、支持向量机(SVM)或K近邻(KNN)等算法。Scikit-learn这样的Java库提供了丰富的机器学习API。 4. **拆分数据**:将数据划分为训练集和测试集,通常是80%的数据用于训练,20%的数据用于评估模型性能。 5. **模型训练**:使用训练集训练所选的机器学习模型,并调整超参数以优化性能。 6. **模型评估**:在测试集上应用模型,计算准确率、精确度、召回率、F1分数等指标,评估模型在新数据上的表现。 7. **结果分析**:查看评估结果,如果模型效果不佳,可能需要尝试其他算法或优化策略。 ```java import weka.classifiers.trees.J48; import weka.core.Instances; import weka.core.converters.ConverterUtils.DataSource; public class IrisClassification { public static void main(String[] args) throws Exception { // 加载数据源 DataSource source = new DataSource("iris.arff"); Instances data = source.getDataSet(); // 设置为二分类问题 (假设目标变量为第三个类别) data.setClassIndex(2); // 划分训练集和测试集 Instances trainData = new Instances(data, 0, (int)(data.numInstances() * 0.8)); Instances testData = new Instances(data, (int)(data.numInstances() * 0.8), (data.numInstances() - trainData.numInstances())); // 创建J48决策树分类器 J48 classifier = new J48(); // 训练模型 classifier.buildClassifier(trainData); // 预测并评估测试集 Evaluation eval = new Evaluation(trainData); eval.evaluateModel(classifier, testData); // 输出评估结果 System.out.println(eval.toSummaryString("\nResults\n======\n", false)); } } ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值