背景
项目中有一个数据文件数量庞大,一个文件中按照年月日分成几十万条数据,想试试能不能用python把它简单切割一下,按照日期分类切成小的csv文件。
于是在网上找了很多资料,结合自己的一些修改,整理了一下,方便以后再用。
大概步骤
1、读取文件
2、找出需要分类的列
3、将此列中重复的内容删除,每类剩余一条
4、把该列所有符合某一类的内容存入一个csv文件中
上代码
import pandas as pd
# 读取文件数据
df=pd.read_csv('D:\\接收的文件\\lqf.csv', sep=',',engine='python',header=[0])
# 列csv文件中所有列
df.columns = ['year', 'date', 'statefips', 'countyfips', 'ctfips', 'latitude', 'longitude', 'DS_PM_pred', 'DS_PM_stdd']
# 删除date列中的重复项,也就是说剩下的date都是已经分好的类别
date_cate = df.drop_duplicates(subset=['date'])
print(date_cate.date)
print(range(len(date_cate))) # date中的所有类,也就是文件数
for name in dat