关于QPS的那些事儿

评价一个网站的“大小”,处于视角的不同,有很多种衡量的方法,类似文章数,页面数之类的数据非常明显,也没有什么可以争议的。但对于并发来说,争议非常之多,这里就从一个技术的角度开始,谈谈几个Web网站的数量级。

相信很多人谈论一个网站的热度,总免不了会询问日均PV,同时在线人数、注册用户数等运营数据,说实话从技术角度来说,这几个数值没有一个可以放在一起比较的——一个静态网站的PV跟一个SNS类/Web Game网站的PV根本就不是一回事。由于互联网有一个传说中的“3秒定律”,可能当下更多的网站技术指标要求1.5秒以内加载整页,或者至少可以达到阅读的标准。如果要较真什么“同时在线”,毫不客气的说,对于HTTP这类短链接的网络协议来说,在WebSocket还不普及的时代,能统计在线纯属扯淡,唯一能做的只是取个时间段,计算下访问用户而已。这些依然可以换算成QPS(Quest Per Second每秒请求数)。就并发而言,我唯一推崇的只有理论最大QPS和悲观QPS。

 

这里就大致根据理论最大QPS,给网站做几个分类

50QPS以下——小网站

没什么好说的,简单的小网站而已,就如同本站这样,你可以用最简单的方法快速搭建,短期没有太多的技术瓶颈,只要服务器不要太烂就好。

50~100QPS——DB极限型

大部分的关系型数据库的每次请求大多都能控制在0.01秒左右,即便你的网站每页面只有一次DB请求,那么页面请求无法保证在1秒钟内完成100个请求,这个阶段要考虑做Cache或者多DB负载。无论那种方案,网站重构是不可避免的。

300~800QPS——带宽极限型

目前服务器大多用了IDC提供的“百兆带宽”,这意味着网站出口的实际带宽是8M Byte左右。假定每个页面只有10K Byte,在这个并发条件下,百兆带宽已经吃完。首要考虑是CDN加速/异地缓存,多机负载等技术。

500~1000QPS——内网带宽极限+Memcache极限型

由于Key/value的特性,每个页面对memcache的请求远大于直接对DB的请求,Memcache的悲观并发数在2w左右,看似很高,但事实上大多数情况下,首先是有可能在次之前内网的带宽就已经吃光,接着是在8K QPS左右的情况下,Memcache已经表现出了不稳定,如果代码上没有足够的优化,可能直接将压力转嫁到了DB层上,这就最终导致整个系统在达到某个阀值之上,性能迅速下滑。

1000~2000QPS——FORK/SELECT,锁模式极限型

好吧,一句话:线程模型决定吞吐量。不管你系统中最常见的锁是什么锁,这个级别下,文件系统访问锁都成为了灾难。这就要求系统中不能存在中央节点,所有的数据都必须分布存储,数据需要分布处理。总之,关键词:分布

2000QPS以上——C10K极限

尽管现在很多应用已经实现了C25K,但短板理论告诉我们,决定网站整体并发的永远是最低效的那个环节。我承认我生涯中从未遇到过2000QPS以上,甚至1.5K以上的网站,希望有此经验的哥们可以一起交流下

 

 

转:http://www.litrin.net/2013/03/27/web%E7%BD%91%E7%AB%99%E7%9A%84%E5%87%A0%E4%B8%AA%E5%B9%B6%E5%8F%91%E9%87%8F%E7%BA%A7/

<think>好的,我现在需要回答用户关于QPS的问题,包括它的定义、如何计算以及如何优化。首先,我要确保自己正确理解QPS的概念。QPS是每秒查询率,通常用来衡量系统处理请求的能力。接下来,我需要回忆相关的计算方法,比如QPS等于总请求数除以时间,或者并发数除以响应时间。这里要注意引用用户提供的参考资料,特别是引用[1]和[2]中的内容。 然后,关于优化QPS的方法,我需要分几个方面来考虑。比如优化代码、数据库、架构设计、缓存、负载均衡和监控等。每个部分都需要具体的例子或策略,比如减少不必要的数据库查询,使用索引,分库分表,引入缓存机制等。同时,要确保这些优化方法有逻辑性,并且结合用户提供的引用内容,比如引用[1]提到的提升QPS的手段不一定是降低RT,可能需要多方面的优化。 接下来要检查是否符合系统级指令,比如数学公式的正确使用。例如,计算QPS的公式需要用行内公式格式$QPS = \frac{请求总数}{总时间}$,而如果有独立公式的话,需要用$$...$$。同时,回答要使用中文,结构清晰,分点说明。 还需要生成相关问题,这部分需要根据QPS的相关知识点提出,比如与TPS的区别、不同场景下的QPS需求、监控工具等。确保问题有针对性,能够帮助用户进一步学习。 最后,检查引用是否正确添加,每个引用只在第一次提到时标注,并且自然融入内容中。例如,在解释QPS计算时引用[1],在提到优化方法时引用[2]。同时避免使用Markdown格式,保持回答的简洁和易读性。 可能会有疑问的地方是,如何准确区分QPS和TPS,是否需要详细说明?根据用户的问题,他们可能已经了解一些,所以简要提及即可,并在相关问题中引导用户进一步探索。另外,在优化方法部分,是否需要更具体的例子?比如具体的缓存技术或数据库优化手段,但用户提供的引用中没有具体技术,所以保持一般性的建议比较合适。 总结下来,回答的结构应该是:定义QPS,计算公式及例子,优化方法分点列出,然后相关问题部分提出三个相关的问题。确保每个部分都清晰,并且正确引用资料。</think>### QPS的定义与计算 **QPS(Queries Per Second)** 是衡量系统每秒处理查询请求能力的指标,常用于评估Web服务器、数据库等服务的性能[^2]。 #### 计算公式 $$QPS = \frac{请求总数}{总时间}$$ 或基于并发数(Concurrency)和响应时间(Response Time, RT)计算: $$QPS = \frac{并发数}{RT}$$ 例如,若系统并发处理100个请求,平均响应时间为0.5秒,则$QPS = \frac{100}{0.5} = 200$[^1]。 --- ### 优化QPS的常用方法 1. **代码优化** - 减少冗余计算或数据库查询,例如通过缓存重复结果。 - 使用异步处理避免阻塞,如I/O操作异步化。 2. **数据库优化** - 添加索引加快查询速度。 - 分库分表降低单表压力,例如按业务拆分数据库。 3. **架构设计** - **横向扩展**:通过负载均衡(如Nginx)将流量分发到多台服务器。 - **缓存机制**:引入Redis等缓存层,减少直接访问数据库的频率。 4. **资源与监控** - 升级硬件(CPU、内存、SSD)。 - 实时监控QPS和RT,定位瓶颈(如使用Prometheus+Grafana)。 --- ### 示例场景 假设一个电商系统在促销期间QPS从500骤增到2000,可通过以下步骤优化: 1. 增加服务器实例并配置负载均衡。 2. 对商品详情页启用Redis缓存。 3. 优化数据库慢查询,添加联合索引。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值