poj 1287 && la 2515

题目概述

有P个地点,R条双向路,求其最小生成树边权和

时限

1000ms/3000ms

输入

第一行整数P,R,其后R行,每行三个整数a,b,c,描述a到b之间的一条路径,权值为c,输入到P=0结束

限制

1<=P<=50;1<=R<=100

输出

每行一个数,为所求边权和

样例输入

1 0

2 3
1 2 37
2 1 17
1 2 68

3 7
1 2 19
2 3 11
3 1 7
1 3 5
2 3 89
3 1 91
1 2 32

5 7
1 2 5
2 3 7
2 4 8
4 5 11
3 5 10
1 5 6
4 2 12

0

样例输出

0
17
16
26

讨论

图论,最小生成树,prim算法,没什么说的,很直白,求就是
由于题目相当直白,因此再转述也没什么意思,直接就把模型抽象好了

题解状态

176K,16MS,C++,1028B

题解代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define MAXN 52
#define memset0(a) memset(a,0,sizeof(a))

int P, R;//地点总数 路径总数
int graph[MAXN][MAXN], dis[MAXN];//邻接矩阵 两点间最短距离
bool mk[MAXN];//已在树中的标记
int fun()
{
    for (int p = 1; p <= P; p++)
        for (int i = p + 1; i <= P; i++)
            graph[p][i] = graph[i][p] = INF;//初始化邻接矩阵
    for (int p = 0; p < R; p++) {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);//input
        graph[a][b] = graph[b][a] = min(graph[a][b], c);
    }
    int sum = 0;//边权和
    for (int p = 1; p <= P; p++) {
        dis[p] = graph[1][p];//初始化最短距离数组
        mk[p] = 0;
    }
    mk[1] = 1;//第一个点加入树 下面是prim主体
    for (int p = 1; p < P; p++) {
        int least = INF, pos;
        for (int p = 1; p <= P; p++)
            if (!mk[p] && least>dis[p]) {
                least = dis[p];
                pos = p;
            }
        mk[pos] = 1;
        sum += least;
        for (int p = 1; p <= P; p++)
            if (!mk[p] && dis[p] > graph[pos][p])
                dis[p] = graph[pos][p];
    }
    return sum;
}
int main(void)
{
    //freopen("vs_cin.txt", "r", stdin);
    //freopen("vs_cout.txt", "w", stdout);

    while (~scanf("%d%d", &P, &R) && P) {//input
        printf("%d\n", fun());//output
    }
}

EOF

展开阅读全文
©️2020 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值