这道题一看就是01背包问题,但是加了个限制条件,那么就得对01背包问题做做改变。
关键是怎么改呢?网上很多解题报告都讲了,要对(q-p)的值从小到大排序,然后01背包就行了,虽然实现上很简单
但是要想把它想明白,为什么要对q-p从小到大排序,就比较难了.....至少我就想不到。。。。
我看了别人的解题报告,自己想了好久,下面给出我的理解吧;
struct node //先建立一个结构体
{
int p,q,v;
}a[5500];
然后我写出一维DP的过程:
for(int i=1;i<=n;i++)
for(int j=m;j>=a[i].q;j--)
dp[j]=max(dp[j],dp[j-a[i].p]+a[i].v);
这里没啥问题吧;单从这个dp过程是没法知道排序缘由的,咱们继续想,这个dp过程是由状态转移方程本质得到的,而状态转移方程式:(接下来看好了)
dp[2][m]=max(dp[1][m],dp[1][m-a[i].p]+a[i].v);
//假设现在有两个物体 A B 放入容量为m的背包中 参数分别为 p1 q1 p2 q2
// 这个a[i].p中的i 是不是代表两种一含义,一个代表先放A再放B 另一个代表先放B 再放A
//继续看,如果是先放A 放完A后 背包容量还剩 m-p1 那么要想继续判断B能不能放进去,就该满足 m-p1>=q2; (1)
//同理 如果先放B 放完B 后 背包容量还剩 m-p2 那么要想继续判读A能不能放进去 就该满足 m-p2>=q1; (2)
// (1)—(2) 就等于 q1-p1<=q2-p2;
//ok