如何求解一个二叉树所有节点的深度?
但是要求解所有节点的深度值呢?上面的算法就不再适用了。我们可以这样思考,采用递归遍历所有节点的时候, 递归函数的调用层数其实就是该节点的深度。
两种算法的不同之处在于,后者使用了一个变量记录递归函数的
常见的算法是采用递归求解二叉树的最大深度,算法如下:
int maxDepth(node *p)
{
if (!p)
return 0;
int lh = maxDepth(p->left);
int rh = maxDepth(p->right);
return lh > rh ? lh + 1 : rh + 1;
}
但是要求解所有节点的深度值呢?上面的算法就不再适用了。我们可以这样思考,采用递归遍历所有节点的时候, 递归函数的调用层数其实就是该节点的深度。
算法如下:
void print_depth(node *p)
{
static int depth=0;
depth++;
if(!p){
goto out;
}else{
printf("node %c: %d\n",p->data,depth);
print_depth(p->left);
print_depth(p->right);
}
out:
depth--;
}
每当进入递归函数一次,depth就增加1,每退出函数一次,depth就减少1。由于递归函数中depth需要动态维护,因此这里使用了static关键字。如有不清楚static关键字的同鞋可以参考我之前的博文。
两种算法的不同之处在于,后者使用了一个变量记录递归函数的