嗯一直放在那里没有去学虚树现在要省选了才赶快拿出来看一道水题
对这个有阴影呢是因为一直没调出来世界树。。。。
然后发现貌似这道题的虚树还是蛮简单的?
虚树上
联通所选所有点所需长度=(
DFS
相邻点间距离+
DFS
首尾距离)/2
然后根据
DFS
序为
Key
放入平衡树中即可
注意一下
long
long
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<set>
using namespace std;
#define ll long long
char c;
inline void read(ll &a)
{
a=0;do c=getchar();while(c<'0'||c>'9');
while(c<='9'&&c>='0')a=(a<<3)+(a<<1)+c-'0',c=getchar();
}
ll n,m;
const
ll INF=1<<29;
struct Chain
{
ll u;
ll len;
Chain *next;
}*Head[200001];
inline void Add(ll u,ll v,ll len){Chain *tp=new Chain;tp->len=len;tp->u=v;tp->next=Head[u];Head[u]=tp;}
namespace C{ll Block[300001];ll Len[300001];ll ST[300001][18];ll In[300001];ll tot;inline ll L(ll x,ll y){return Len[x]<Len[y]?x:y;}inline ll LCA(ll a,ll b){if(!(a^b))return a;ll x=In[a],y=In[b];if(x>y)swap(x,y);ll Len=y-x+1,Bl=Block[Len];return L(ST[x][Bl],ST[y-(1<<Bl)+1][Bl]);}ll Dis(ll u,ll v){return Len[u]+Len[v]-2*Len[LCA(u,v)];}inline void Bg(){In[0]=-INF,In[++tot]=INF;Len[0]=1ll<<29;ll base;for(ll i=1,base=1;i<=17;i++,base<<=1)for(ll j=1;j<=tot;j++)ST[j][i]=L(ST[j][i-1],ST[j+base][i-1]);ll con=0;for(ll i=1;i<=tot;i++)if(i^(i&-i))Block[i]=con-1;else Block[i]=con++;}void DFS(ll u,ll fa,ll len){ST[In[u]=++tot][0]=u;Len[u]=len;for(Chain*tp=Head[u];tp;tp=tp->next)if(tp->u^fa){DFS(tp->u,u,len+tp->len);ST[++tot][0]=u;}if(u^fa)return ;Bg();}struct Node{ll u;inline friend bool operator <(Node a,Node b){return In[a.u]<In[b.u];}inline friend bool operator !=(Node a,Node b){return In[a.u]!=In[b.u];}};};
#define LCA(a,b) C::LCA((a).u,(b).u)
#define Dis(a,b) C::Dis((a).u,(b).u)
#define Node C::Node
set<Node>Q;
ll ans;
#define it set<Node>::iterator
it Ed;
ll Ch[100001];
Node BG,ED;
int main()
{
ll j,k,l,i;
read(n),read(m);
for(i=2;i<=n;i++)
read(j),read(k),read(l),Add(j,k,l),Add(k,j,l);
C::DFS(1,1,0);
BG.u=0;
ED.u=C::tot;
Q.clear();
ll S;
Q.insert(BG),Q.insert(ED);
for(i=1;i<=m;i++)
{
read(j);
Ch[j]^=1;
if(Ch[j])
{
Q.insert((Node){j});
Node tp=*--Q.lower_bound((Node){j});
Node tp2=*Q.upper_bound((Node){j});
if(tp!=BG)ans+=Dis((Node){j},tp);
if(tp2!=ED)ans+=Dis((Node){j},tp2);
if(tp2!=ED&&tp!=BG)ans-=Dis(tp2,tp);
if(Q.size()!=2)
S=Dis(*--Q.lower_bound(ED),*Q.upper_bound(BG));else S=0;
}
else
{
Q.erase((Node){j});
Node tp=*--Q.lower_bound((Node){j}),tp2=*Q.upper_bound((Node){j});
if(tp!=BG)ans-=Dis((Node){j},tp);
if(tp2!=ED)ans-=Dis((Node){j},tp2);
if(tp2!=ED&&tp!=BG)ans+=Dis(tp2,tp);
if(Q.size()!=2)
S=Dis(*--Q.lower_bound(ED),*Q.upper_bound(BG));else S=0;
}
printf("%lld\n",ans+S);
}
return 0;
}