自动驾驶技术正在逐步改变交通运输领域,其发展过程中的一个核心挑战是如何确保自动驾驶系统在各种复杂和动态的交通环境中作出安全、精准的决策。要实现这一目标,自动驾驶系统需要大量高质量、多样化的训练数据,这些数据不仅包括来自车辆传感器的实时信息,还包括不同场景下的驾驶行为数据。传统的数据采集方式虽然有效,但在成本、时间和安全等方面存在诸多问题,特别是当面对罕见的驾驶场景时,数据的获取往往显得力不从心。
在这一背景下,生成式AI(Generative AI)作为一种新兴的技术,展现出了巨大的潜力。生成式AI能够通过学习现有数据的特征和分布,生成新的数据样本,帮助自动驾驶系统在无需大量现实世界测试的情况下,生成多样化的模拟数据,从而加速自动驾驶技术的开发和优化。本文将探讨生成式AI在自动驾驶中的应用,特别是在数据生成方面的作用,分析其在训练和验证自动驾驶系统中的应用场景,并探讨如何利用生成式AI生成高质量的数据以支持自动驾驶技术的进一步发展。
1. 自动驾驶数据的挑战
1.1 自动驾驶系统的核心数据需求
自动驾驶系统的核心功能之一是环境感知。为了让车辆能够“看懂”周围的世界,系统需要依赖大量的传感器数据,如激光雷达(LiDAR)、摄像头、雷达、超声波等。这些数据包括但不限于:
- 视觉信息:来自摄像头的图像数据,能够识别路面、交通标志、行人、其他车辆等。
- 三维空间数据:来自激光雷达(LiDAR)和雷达的距离和形状数据,用于构建周围环境的三维模型。
- 环境感知数据:超声