Hopenet demo环境搭建

本文档详细记录了Hopenet在cvpr2018工作坊论文中用于头姿估计的环境搭建过程。在安装dlib和torch时遇到冲突导致segmentation fault错误,因此放弃使用dlib并自行处理面部检测。接着,通过编写脚本生成面部检测文件,并解决由于CUDA版本不匹配引发的运行时错误。最后成功执行代码,生成了头姿估计的可视化结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hopenet: cvpr2018 workshop paper for head pose estimation.

code:https://github.com/natanielruiz/deep-head-pose

环境搭建存在问题:

1. 安装dlib,运行python code/test_on_video_dlib.py --snapshot ./HeadPoseModelSnapshot/hopenet_robust_alpha1.pkl --face_model ./DLIB_MODEL/mmod_human_face_detector.dat --video ./video/1.mp4 --output_string outpt_ --n_frames 1000 --fps 30

issue: dlib和torch不能并存,即不能同时import torch和import dlib. 会报segmentation fault错误。

没找到原因,最终不使用dlib,预先自己做FD.

2. 使用python code/test_on_video_dockerface.py --snapshot ./HeadPoseModelSnapshot/hopenet_robust_alpha1.pkl --video ./video/1.mp4 --bboxes ./fdld/03_fd.txt --output_string new_output --n_frames 276 --fps 30

step1: 生成03_fd.txt,文件每行5个值,表示: (n_frame x_min y_min x_max y_max confidence)

         n_frame: 从1开始,表示帧数索引。

        x_min,y_min: face bounding

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值