两角和与差的余弦公式的五种推导方法之对比

原文链接地址:http://old.pep.com.cn/gzsxb/jszx/jxyj/201403/t20140321_1189326.htm

弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:

 

方法一:应用三角函数线推导差角公式的方法

 

设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POxαβ

 

 

过点PPMx轴,垂足为M,那么OM即为αβ角的余弦线,这里要用表示αβ的正弦、余弦的线段来表示OM

 

过点PPAOP1,垂足为A,过点AABx轴,垂足为B,再过点PPCAB,垂足为C,那么cosβOA,sinβAP,并且∠PAC=∠P1Oxα,于是OMOBBMOBCPOAcosαAPsinα=cosβcosα+sinβsinα

 

综上所述,.

 

    说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.

 

方法二:应用三角形全等、两点间的距离公式推导差角公式的方法

 

P1(x1y1)P2(x2y2),则有|P1P|= .

 

在直角坐标系内做单位圆,并做出任意角αα+β,它们的终边分别交单位圆于P2P3P4点,单位圆与x轴交于P1,则P1(1,0)P2(cosαsinα)P3(cos(α+β)sin(α+β)).

 

 

,且

 

,∴

 

 

 

 

.

 

    说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点建立起等式关系,通过将等式的化简、变形就可以得到符合要求的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.

 

方法三:应用余弦定理、两点间的距离公式推导差角公式的方法

 

 

.

 

在△OPQ中,∵

 

 

 

.

 

    说明:此题的解题思路和构想都是容易实现的. 因为要求两角和与差的三角函数,所以构造出和角和差角是必须实现的. 构造出的和角或差角的余弦函数又需要和这两个角的三角函数建立起等式关系,因此借助于余弦定理、两点间的距离公式建立起等式关系容易出现,因此此种方法是推导两角和与差的余弦的比较容易理解的一种方法. 但此种方法必须是在学习完余弦定理的前提下才能使用,因此此种方法在必修四中又无法使用. 另外也同样需要考虑三点在一条直线上的情况.

 

方法四:应用三角形面积公式推导推导差角公式的方法

 

αβ是两个任意角,αβ两个角的一条边拼在一起,顶点为O,过B点作OB的垂线,交α另一边于A,交β另一边于C,则有SOAC=SOAB+SOBC..

 

 

根据三角形面积公式,有

 

.

 

 

 

,∴sin(α+β)=sinαcosβ+sinβcosα.

 

根据此式和诱导公式,可继续证出其它和角公式及差角公式.

 

(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα

 

(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)

 

=cosαcosβ-sinαsinβ

 

(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.

 

    说明:此种推导方法通过三角形的面积的和巧妙的将两角和的三角函数与各个角的三角函数和联系在一起,体现了数形结合的特点缺点是公式还是在两个角为锐角的情况下进行的证明,因此同样需要将角的范围进行拓展.

 

()应用数量积推导余弦的差角公式

 

 

在平面直角坐标系xOy内,作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为AB,则

 

=(cosα,sinα),=(cosβ,sinβ).

 

由向量数量积的概念,有.

 

由向量的数量积的坐标表示,有

 

.

 

于是,有.

 

    说明:应用数量积推导余弦的差角公式无论是构造两个角的差,还是得到每个角的三角函数值都是容易实现的,而且从向量的数量积的定义和坐标运算两种形式求向量的数量积将二者之间结合起来,充分体现了向量在数学中的桥梁作用.

 

综上所述,从五种不同的推导两角和与差的余弦公式的过程可以看出,不同的推导方法体现出不同的数学特点,不同的巧妙构思,相同的结果,也进一步体验了数学的博大精深.

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
PID是一种常用的控制算法,用于控制系统的运动控制。平衡车是一种典型的非线性系统,PID控制算法可以帮助平衡车实现平稳的运动。 首先,我们先将平衡车建模为一个非线性系统。假设平衡车的状态由两个变量θ和ω表示,分别代表车身的倾斜角度和角速度。根据平衡车的运动学和动力学方程,可以得到如下状态方程: θ' = ω ω' = -g/l * sin(θ) - k1 * ω + k2 * u 其中,θ'和ω'表示对应变量的导数,g为重力加速度,l为平衡车的质心高度,k1和k2为控制器的参数,u为控制器的输出。 接下来,我们考虑设计PID控制器来控制平衡车的倾斜角度。PID控制器由比例项、积分项和微分项组成,根据控制理论的知识,可以得到如下控制器输出的公式: u = Kp * e + Ki * ∫e dt + Kd * de/dt 其中,e为期望倾斜角度与实际倾斜角度的值,Kp、Ki和Kd为控制器的参数。 代入状态方程,我们可以得到如下PID控制器的输出方程: u = Kp * (θd - θ) + Ki * ∫(θd - θ) dt + Kd * (ωd - ω) 在实际控制中,我们可以根据系统的需求和实际情况来选择合适的PID参数。 LQR(线性二次型调节)是一种优化控制方法,用于设计最优的线性控制器。它能够最小化系统输出和期望输出之间的距,并尽量减小控制器的输出。对于平衡车问题,LQR可以用来设计一个最优的线性控制器。 首先,我们将平衡车的状态方程线性化,得到一个线性系统的状态方程: θ' = ω ω' = -g/l * θ - k1 * ω + k2 * u 然后,根据LQR的理论,我们可以定义一个性能指标J,表示系统输出与期望输出之间的距的平方和。J的定义如下: J = ∫(θ - θd)^2 + q * ω^2 + r * u^2 dt 其中,q和r是权重参数,用来调整角速度和控制器输出的权重。我们的目标是最小化J。在LQR中,我们采用二次型的形式,将J表示为一个矩阵的二次型。 接下来,我们利用最小二乘原理求解LQR问题,得到最优的线性控制器K。具体的推导过程涉及到矩阵运算和最优化的方法,这里不做详细展开。 最后,根据计算得到的最优线性控制器K,我们可以用于实际的平衡车控制中。通过将实际状态代入线性控制器中,就可以得到控制器的输出u,从而实现平衡车的平稳运动。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值