三角函数两角和差公式推导

文章详细介绍了在几何推理中如何使用两角和公式、两角差公式,并指出通过诱导公式可以将钝角转化为锐角,从而简化问题。主要内容围绕三角函数在直角三角形中的应用和角度关系的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.几何推理

1.两角和公式

在这里插入图片描述

做一斜边为1的直角△ABC,任意旋转非 k Π , k = N kΠ,k=N kΠ,k=N,补充如图,令 ∠ A B C = ∠ α , ∠ C B F = ∠ β ∠ABC=∠α,∠CBF=∠β ABC=αCBF=β
∴ ∠ D B F = ∠ D B A + ∠ α + ∠ β = 90 ° , ∠ D A F = ∠ D B A + ∠ D A B ∴∠DBF=∠DBA+∠α+∠β=90°,∠DAF=∠DBA+∠DAB DBF=DBA+α+β=90°,DAF=DBA+DAB
∵ ∠ D A B = ∠ α + ∠ β ∵∠DAB=∠α+∠β DAB=α+β
∴ ∠ A C F + ∠ B C F = 90 ° ∴∠ACF+∠BCF=90° ACF+BCF=90°
∵ ∠ A C F = ∠ β ∵∠ACF=∠β ACF=β
∴ A B 长度为 1 ∴AB长度为1 AB长度为1
∵ A C = s i n ( α ) , B C = c o s ( α ) ∵AC=sin(α),BC=cos(α) AC=sin(α),BC=cos(α)
∵ B F = c o s ( α ) ∗ c o s ( β ) , C F = c o s ( α ) ∗ s i n ( β ) , A E = s i n ( α ) s i n ( β ) , C E = s i n ( α ) c o s ( β ) , B D = E F = s i n ( α + β ) , D A = c o s ( α + β ) ∵BF=cos(α)*cos(β),CF=cos(α)*sin(β),AE=sin(α)sin(β),CE=sin(α)cos(β),BD=EF=sin(α+β),DA=cos(α+β) BF=cos(α)cos(β),CF=cos(α)sin(β),AE=sin(α)sin(β),CE=sin(α)cos(β),BD=EF=sin(α+β),DA=cos(α+β)
∵ { c o s ( α + β ) = c o s ( α ) ∗ c o s ( β ) − s i n ( α ) ∗ s i n ( β ) s i n ( α + β ) = s i n ( α ) ∗ c o s ( β ) + c o s ( α ) ∗ s i n ( β ) ∵\begin{cases} cos(α+β)=cos(α)*cos(β)-sin(α)*sin(β) \\sin(α+β)=sin(α)*cos(β)+cos(α)*sin(β) \end{cases} {cos(α+β)=cos(α)cos(β)sin(α)sin(β)sin(α+β)=sin(α)cos(β)+cos(α)sin(β)

2.两角差公式

∵ { c o s ( α + β ) = c o s ( α ) ∗ c o s ( β ) − s i n ( α ) ∗ s i n ( β ) s i n ( α + β ) = s i n ( α ) ∗ c o s ( β ) + c o s ( α ) ∗ s i n ( β ) ∵\begin{cases} cos(α+β)=cos(α)*cos(β)-sin(α)*sin(β) \\sin(α+β)=sin(α)*cos(β)+cos(α)*sin(β) \end{cases} {cos(α+β)=cos(α)cos(β)sin(α)sin(β)sin(α+β)=sin(α)cos(β)+cos(α)sin(β)
对 ∠ β 做取反变化 对∠β做取反变化 β做取反变化
∵ { c o s ( α + ( − β ) ) = c o s ( α ) ∗ c o s ( β ) − s i n ( α ) ∗ ( − s i n ( β ) ) s i n ( α + ( − β ) ) = s i n ( α ) ∗ c o s ( β ) + c o s ( α ) ∗ ( − s i n ( β ) ) ∵\begin{cases} cos(α+(-β))=cos(α)*cos(β)-sin(α)*(-sin(β)) \\sin(α+(-β))=sin(α)*cos(β)+cos(α)*(-sin(β)) \end{cases} {cos(α+(β))=cos(α)cos(β)sin(α)(sin(β))sin(α+(β))=sin(α)cos(β)+cos(α)(sin(β))

∵ { c o s ( α − β ) = s i n ( α ) ∗ s i n ( β ) + c o s ( α ) ∗ s i n ( β ) s i n ( α − β ) = s i n ( α ) ∗ c o s ( β ) − c o s ( α ) ∗ s i n ( β ) ∵\begin{cases} cos(α-β)=sin(α)*sin(β)+cos(α)*sin(β) \\sin(α-β)=sin(α)*cos(β)-cos(α)*sin(β) \end{cases} {cos(αβ)=sin(α)sin(β)+cos(α)sin(β)sin(αβ)=sin(α)cos(β)cos(α)sin(β)

3.总结

∵ { c o s ( α + β ) = c o s ( α ) ∗ c o s ( β ) − s i n ( α ) ∗ s i n ( β ) s i n ( α + β ) = s i n ( α ) ∗ c o s ( β ) + c o s ( α ) ∗ s i n ( β ) c o s ( α − β ) = s i n ( α ) ∗ s i n ( β ) + c o s ( α ) ∗ s i n ( β ) s i n ( α − β ) = s i n ( α ) ∗ c o s ( β ) − c o s ( α ) ∗ s i n ( β ) ∵\begin{cases} cos(α+β)=cos(α)*cos(β)-sin(α)*sin(β) \\sin(α+β)=sin(α)*cos(β)+cos(α)*sin(β) \\cos(α-β)=sin(α)*sin(β)+cos(α)*sin(β) \\sin(α-β)=sin(α)*cos(β)-cos(α)*sin(β) \end{cases} cos(α+β)=cos(α)cos(β)sin(α)sin(β)sin(α+β)=sin(α)cos(β)+cos(α)sin(β)cos(αβ)=sin(α)sin(β)+cos(α)sin(β)sin(αβ)=sin(α)cos(β)cos(α)sin(β)

4.其他

为什么几何推理∠β和∠α不是钝角,根据诱导公式可将钝角化为锐角。所以只推导锐角和可以等价于推导任意角和

### 三角函数二倍角公式概述 三角函数的二倍角公式是一类重要的数学工具,在解决几何、物理以及工程领域的问题时具有广泛应用。以下是常见的正弦、余弦正切函数的二倍角公式及其推导过程。 #### 正弦函数的二倍角公式 正弦函数的二倍角公式可以表示为: \[ \sin(2A) = 2 \sin(A)\cos(A) \quad [^1] \] 此公式可以通过两角公式推导得出,即利用 \(\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)\),令 \(B=A\) 得到上述结果。 #### 余弦函数的二倍角公式 对于余弦函数,存在三种不同的表达形式,具体如下: 1. \(\cos(2A) = \cos^2(A) - \sin^2(A) \quad [^1]\) 2. 利用平方关系可进一步转化为: \(\cos(2A) = 2\cos^2(A) - 1 \quad \) 3. 或者也可以写作: \(\cos(2A) = 1 - 2\sin^2(A) \quad \) 这些变形在实际应用中非常有用,尤其是在简化复杂的三角方程或积分计算时。 #### 正切函数的二倍角公式 正切函数的二倍角公式定义为: \[ \tan(2A) = \frac{2\tan(A)}{1-\tan^2(A)} \quad [^1] \] 该公式同样基于两角公式推导而来,并且需要注意分母不等于零的情况。 #### 记忆技巧与注意事项 为了便于记忆,有这样一个口诀:“降次必升角,降角必升次”。这表明当降低幂指数时会引入更高阶的角度项;反之亦然。 此外,如果遇到形如 \(a\sin(A)+b\cos(A)\) 的线性组合,则可通过辅助角方法将其统一成单一角度的形式,即\[ a\sin(A)+b\cos(A)=\sqrt{a^2+b^2}\sin(A+C), \text{其中 } \tan(C)=\frac{b}{a} \]^3]. 以上便是关于三角函数二倍角公式的详细介绍及相关扩展内容。 ```python import math def sin_double_angle(a): return 2 * math.sin(a) * math.cos(a) def cos_double_angle(a, form=0): if form == 0: return math.pow(math.cos(a), 2) - math.pow(math.sin(a), 2) elif form == 1: return 2 * math.pow(math.cos(a), 2) - 1 else: return 1 - 2 * math.pow(math.sin(a), 2) def tan_double_angle(a): tana = math.tan(a) return (2*tana)/(1-math.pow(tana, 2)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

唐-import-某人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值