Time Limit : 1000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 27 Accepted Submission(s) : 11
Problem Description
Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. "
How good an opportunity that Gardon can not give up! The "Problem GF" told by Angel is actually "Gauss Fibonacci".
As we know ,Gauss is the famous mathematician who worked out the sum from 1 to 100 very quickly, and Fibonacci is the crazy man who invented some numbers.
Arithmetic progression:
g(i)=k*i+b;
We assume k and b are both non-nagetive integers.
Fibonacci Numbers:
f(0)=0
f(1)=1
f(n)=f(n-1)+f(n-2) (n>=2)
The Gauss Fibonacci problem is described as follows:
Given k,b,n ,calculate the sum of every f(g(i)) for 0<=i<n
The answer may be very large, so you should divide this answer by M and just output the remainder instead.
How good an opportunity that Gardon can not give up! The "Problem GF" told by Angel is actually "Gauss Fibonacci".
As we know ,Gauss is the famous mathematician who worked out the sum from 1 to 100 very quickly, and Fibonacci is the crazy man who invented some numbers.
Arithmetic progression:
g(i)=k*i+b;
We assume k and b are both non-nagetive integers.
Fibonacci Numbers:
f(0)=0
f(1)=1
f(n)=f(n-1)+f(n-2) (n>=2)
The Gauss Fibonacci problem is described as follows:
Given k,b,n ,calculate the sum of every f(g(i)) for 0<=i<n
The answer may be very large, so you should divide this answer by M and just output the remainder instead.
Input
The input contains serveral lines. For each line there are four non-nagetive integers: k,b,n,M
Each of them will not exceed 1,000,000,000.
Each of them will not exceed 1,000,000,000.
Output
For each line input, out the value described above.
Sample Input
2 1 4 100 2 0 4 100
Sample Output
21 12#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int mod; typedef struct node { __int64 mat[2][2]; }mat; mat A; // 定义 A 与 mat相同的结构体 void In() { A.mat[0][0] = 1; A.mat[0][1] = 1; A.mat[1][0] = 1; A.mat[1][1] = 0; } mat add(mat a,mat b) // 矩阵加法 { mat C; memset(C.mat, 0, sizeof(C.mat)); // 特别注意 等价于 C.mat[i][j] = 0; for (int i = 0; i<2; i++) { for (int j = 0; j<2; j++) { C.mat[i][j] = (a.mat[i][j] + b.mat[i][j]) % mod; } } return C; } mat mul(mat a, mat b) // 矩阵乘法 { mat C; memset(C.mat, 0, sizeof(C.mat)); // 特别注意 等价于 C.mat[i][j] = 0; for (int i = 0; i<2; i++) { for (int j = 0; j<2; j++) { for (int k = 0; k < 2; k++) { C.mat[i][j] = (C.mat[i][j] + a.mat[i][k] * b.mat[k][j] % mod) % mod; } } } return C; } mat Pow(mat A, int k) // 求 A^k { mat B; memset(B.mat, 0, sizeof(B.mat)); // 特别注意 等价于 B.mat[i][j] = 0; for (int i = 0; i<2; i++) // 单位矩阵初始化 { B.mat[i][i] = 1; } while (k>0) { if (k & 1) B = mul(B, A); A = mul(A, A); k >>= 1; } return B; } mat Pow1(mat A, __int64 k) // 矩阵中元素是矩阵 的幂次方 // 构造这样 { A B1 }^k { // 的矩阵 { 0 B2 } B1=I+A^1+A^2+A^3+A^4+......A^k-1 mat B1,B2,I2,I1; memset(B1.mat, 0, sizeof(B1.mat)); // 单位矩阵初始化 memset(B2.mat, 0, sizeof(B2.mat)); // 单位矩阵初始化 memset(I1.mat, 0, sizeof(I1.mat)); // 单位矩阵初始化 memset(I2.mat, 0, sizeof(I2.mat)); // 单位矩阵初始化 for (int i = 0; i<2; i++) { B1.mat[i][i] = 1; B2.mat[i][i] = 1; I1.mat[i][i] = 1; I2.mat[i][i] = 1; } int a = 1; while (k>0) { if (k & 1) { if (a) { I1 = mul(I1, A); I2 = mul(I2, B1); a = 0; } else { I2 = add(mul(I1, B1), mul(I2, B2)); I1 = mul(I1, A); } } B1 = add(mul(A, B1), mul(B1, B2)); A = mul(A, A); k =k/2; } return I2; } int main() { int k, b; __int64 n; while (scanf("%d %d %I64d %d",&k,&b,&n,&mod) != EOF) { mat x,y,z,e; In(); memset(x.mat, 0, sizeof(x.mat)); memset(y.mat, 0, sizeof(y.mat)); memset(z.mat, 0, sizeof(z.mat)); memset(e.mat, 0, sizeof(e.mat)); y = Pow(A, b); // A^b x = Pow(A, k); // A^k z = Pow1(x, n); // I+A^1+A^2+A^3+A^4+......A^n-1 e = mul(y, z); printf("%d\n", e.mat[0][1] % mod); } return 0; }