Gauss Fibonacci

Time Limit : 1000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 27   Accepted Submission(s) : 11
Problem Description
Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. "
How good an opportunity that Gardon can not give up! The "Problem GF" told by Angel is actually "Gauss Fibonacci".
As we know ,Gauss is the famous mathematician who worked out the sum from 1 to 100 very quickly, and Fibonacci is the crazy man who invented some numbers.

Arithmetic progression:
g(i)=k*i+b;
We assume k and b are both non-nagetive integers.

Fibonacci Numbers:
f(0)=0
f(1)=1
f(n)=f(n-1)+f(n-2) (n>=2)

The Gauss Fibonacci problem is described as follows:
Given k,b,n ,calculate the sum of every f(g(i)) for 0<=i<n
The answer may be very large, so you should divide this answer by M and just output the remainder instead.
 


Input
The input contains serveral lines. For each line there are four non-nagetive integers: k,b,n,M
Each of them will not exceed 1,000,000,000.
 


Output
For each line input, out the value described above.
 


Sample Input
  
  
2 1 4 100 2 0 4 100
 


Sample Output
  
  
21 12
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int  mod;
typedef struct node
{
	__int64 mat[2][2];
}mat;
mat A;  //  定义 A  与 mat相同的结构体
void In()
{
	A.mat[0][0] = 1;
	A.mat[0][1] = 1;
	A.mat[1][0] = 1;
	A.mat[1][1] = 0;
}
mat add(mat a,mat b)   // 矩阵加法
{
	mat C;
	memset(C.mat, 0, sizeof(C.mat)); //  特别注意 等价于  C.mat[i][j] = 0;
	for (int i = 0; i<2; i++)
	{
		for (int j = 0; j<2; j++)
		{		
			C.mat[i][j] = (a.mat[i][j] + b.mat[i][j]) % mod;			
		}
	}
	return C;
}
mat mul(mat a, mat b)  // 矩阵乘法
{
	mat C;
	memset(C.mat, 0, sizeof(C.mat)); //  特别注意 等价于  C.mat[i][j] = 0;
	for (int i = 0; i<2; i++)
	{
		for (int j = 0; j<2; j++)
		{
			for (int k = 0; k < 2; k++)
			{
				C.mat[i][j] = (C.mat[i][j] + a.mat[i][k] * b.mat[k][j] % mod) % mod;
			}
		}
	}
	return C;
}

mat Pow(mat A, int k)  // 求 A^k
{
	mat B;
	memset(B.mat, 0, sizeof(B.mat)); //  特别注意 等价于  B.mat[i][j] = 0;
	for (int i = 0; i<2; i++)       //  单位矩阵初始化
	{
		B.mat[i][i] = 1;
	}
	while (k>0)
	{
		if (k & 1)  B = mul(B, A);
		A = mul(A, A);
		k >>= 1;
	}
	return B;
}

mat Pow1(mat A, __int64 k) //  矩阵中元素是矩阵 的幂次方   // 构造这样   { A  B1 }^k
{														  //   的矩阵    { 0  B2 }        B1=I+A^1+A^2+A^3+A^4+......A^k-1 
	mat B1,B2,I2,I1; 	           
	memset(B1.mat, 0, sizeof(B1.mat)); //  单位矩阵初始化         
	memset(B2.mat, 0, sizeof(B2.mat)); //  单位矩阵初始化
	memset(I1.mat, 0, sizeof(I1.mat)); //  单位矩阵初始化
	memset(I2.mat, 0, sizeof(I2.mat)); //  单位矩阵初始化
	for (int i = 0; i<2; i++)   
	{
		B1.mat[i][i] = 1;
		B2.mat[i][i] = 1;
		I1.mat[i][i] = 1;
		I2.mat[i][i] = 1;
	}
	int a = 1;
	while (k>0)
	{
		if (k & 1)
		{   
			if (a)
			{
				I1 = mul(I1, A);
				I2 = mul(I2, B1);
				a = 0;
			}
			else
			{	
				I2 = add(mul(I1, B1), mul(I2, B2));
				I1 = mul(I1, A);	
			}					
		}		
		  B1 = add(mul(A, B1), mul(B1, B2));
		  A = mul(A, A); 
		  k =k/2;
	}
	return I2;
}
int main()
{
	int k, b;
	__int64 n;
	while (scanf("%d %d %I64d %d",&k,&b,&n,&mod) != EOF)
	{
		mat x,y,z,e;
		In();
		memset(x.mat, 0, sizeof(x.mat));
		memset(y.mat, 0, sizeof(y.mat));
		memset(z.mat, 0, sizeof(z.mat));
		memset(e.mat, 0, sizeof(e.mat));
		y = Pow(A, b);	  //   A^b
		x = Pow(A, k);    //   A^k
		z = Pow1(x, n);	  //   I+A^1+A^2+A^3+A^4+......A^n-1
		e = mul(y, z);
		printf("%d\n", e.mat[0][1] % mod);
 	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值