GARCH
liuxoxo
Wind Have Gone
展开
-
关于Python的ARCH包(四)
1.3 举例参考附加说明,使用递归可以利用ARCH类模型方便的进行多期预测。在特定情况下,那些不与平方项或残差同步的模型并不具有可追踪的正态解析多期预测。所有模型支持三种预测方式:解析:基于ARCH类型的结果,解析预测方法对1步式预测总是可用的;多步解析预测方法仅仅适用于对残差平方项呈线性关系的模型,比如 GARCH 或者 HARCH. 模拟:虽然基于模拟方法的预测对任何步数都可用,...原创 2019-01-22 19:52:37 · 5733 阅读 · 0 评论 -
关于Python的ARCH包(五)
1.4 预测示例1.4.1 数据1.4.2 基本预测1.4.3 替代预测方案1.4.4 TARCH××××××××××××××××××××××1.4.1 Data这些示例是用来Yahoo网站的标准普尔500指数,并通过pandas-datareader包管理数据下载。import datetime as dtimport sysimport numpy as...原创 2019-01-22 21:27:35 · 6461 阅读 · 0 评论 -
关于Python的ARCH包(八)
1.7 波动率过程波动率过程用于添加到均值模型来捕获时变的波动性。1.7.1 常数方差class arch.univariate.ConstantVariance[source]常数波动率过程注意:模型在所有期间具有相同方差backcast(resids)[source]构建回测值来启动递归Parameters: resids (ndarray) – 残差...原创 2019-02-14 22:32:10 · 4805 阅读 · 0 评论 -
关于Python的ARCH包(六)
1.5 预测情形 1.5.1 波动率情形客户端自主随机数生成器可以用于冲击具有特定模式的情况。比如,假定你想知道5天大约平均值的冲击会发生什么。在大多数情况下,此类冲击具有单位方差。但是,可以会产生4倍方差或两倍标准差的情况。 另外一种情形可能是特定冲击期间的样本导致。当使用标准自举方法(历史模拟过滤)时,冲击可以通过历史数据的正态分布刻画出来。当该方法符合实际情况...原创 2019-02-13 21:13:21 · 3097 阅读 · 0 评论 -
关于Python的ARCH包(九)
1.8 使用固定方差过程 FixedVariance波动率过程当两步过程在收敛之前不断重复时可以实现之字形(zig-zag)模型估计.当遇到数值问题或者高维参数空间问题时,该法可以用来估计那些通常看来难以估计的模型。import warningswarnings.simplefilter('ignore')# %matplotlib inlineimport seabor...原创 2019-02-15 09:40:32 · 1624 阅读 · 1 评论 -
关于Python的ARCH包(十)
1.9 分布分布是ARCH模型的最后一项。1.9.1正态分布class arch.univariate.Normal(random_state=None)[source]ARCH模型中的标准正态分布bounds(resids)[source]Parameters: resids (ndarray) – 计算界限时使用的残差 Returns: bound...原创 2019-02-15 10:34:35 · 2214 阅读 · 2 评论 -
关于Python的ARCH包(七)
1.6 均值模型所有的 ARCH模型开始时需要确定一个均值模型。1.6.1非均值class arch.univariate.ZeroMean(y=None, hold_back=None, volatility=None, distribution=None)[source]0条件均值模型估计和模拟:Parameters: y ({ndarray, Series}...原创 2019-02-14 14:39:39 · 7074 阅读 · 1 评论