- 博客(19)
- 收藏
- 关注
原创 CodaLab测试MS-COCO2017训练的结果,即MS-COCO2017 test-dev步骤
CodaLab测试MS-COCO2017训练的结果,即MS-COCO2017 test-dev步骤。
2023-08-17 10:53:02 670 7
原创 My BatisPlus 之 DQL 操作
一. 条件查询//方式一:按条件查询QueryWrapper<User> qw=new QueryWrapper<>();//lt小于qw.lt("age", 18);List<User> userList = userDao.selectList(qw);System.out.println(userList);//方式二:lambda格式按条件查询QueryWrapper<User> qw = new QueryWrapper<
2022-05-28 16:56:15 496
原创 YOLOX训练数据集(VOC)
1.环境配置(1)安装依赖的环境pip3 install -r requirements.txt(2)通过setup.py安装一些库文件python setup.py develop(3)下载apex文件下载apex:https://github.com/NVIDIA/apex将下载好的文件解压到项目根目录下cd apex-masterpip install -v --disable-pip-version-check --no-cache-dir --globa
2022-03-02 10:38:18 4244 4
转载 深度学习中常见的网络结构
随着深度学习的普及开来,设计一个网络结构变得越来越“简单”,如果一个新的网络只是简单的卷积、池化、全连接,改改其中的参数,那就大错特错了。所以网络在应用中,往往要面临的问题是:如何设计一个好的网络结构。目前常见的网络结构:AlexNet、ZF、GoogLeNet、VGG、ResNet等等都可谓曾一战成名,它们都具有自身的特性,它们都提出了创新点。设计一个优秀网络的第一步是学习这些优秀的网络。LeNet是由Yann LeCun完成的具有开拓性的卷积神经网络,是大量网络结构的起点。网络给出了卷积网络
2021-11-23 17:55:42 4090
原创 COCO(.json)格式 转换为 YOLO(.txt)格式训练(详细介绍,避坑贴)
本人前段时间自己从COCO官网下载了数据集,但是一直没怎么打开看。但是今天突然想去跑训练的时候才发现,还需要进行格式转换,因为yolo只支持.txt标签方式。然后就是自己从网上查各种转换帖子,但是发现五花八门,错综复杂,都是各种错误,或者写的不清晰,白忙活了一中午,好在最终挑好了,把过程分享出来,希望给刚入门深度学习的小伙伴们避避坑,避免不必要的时间浪费在这上面。官网下载目录如下:train2017中包含训练所需要的图片val2017包含验证训练模型图片annotations_...
2021-11-12 08:48:21 14713 39
原创 Annie下载器
快速配置和使用You-Get,Youtube-dl,Annie, 和FFmpeg的一键配置脚本。无需安装 Python ,一键配置绿色便携版的 you-get , youtube-dl 。 此绿色版基于 Python 的 embeddable 版。 除了一键部署,后续 you-get, youtube-dl, annie 的更新同样一键完成。项目地址:Annie...
2021-11-08 16:40:49 734
转载 YOLOV5项目文件解析
训练代码train.py注释与解析检测代码detect.py注释与解析测试代码test.py注释与解析dataset.py代码注释与解析general.py代码注释与解析YOLOV5网络结构YOLOV5技术专栏
2021-10-25 20:46:08 557
转载 衡量机器学习模型的三大指标:准确率、精度和召回率。
连接来源:http://mp.weixin.qq.com/s/rXX0Edo8jU3kjUUfJhnyGw 倾向于使用准确率,是因为熟悉它的定义,而不是因为它是评估模型的最佳工具!精度(查准率)和召回率(查全率)等指标对衡量机器学习的模型性能是非常基本的,特别是在不平衡分布数据集的案例中,在周志华教授的「西瓜书」中就特别详细地介绍了这些概念。 什么是分布不平衡的数据集? 倘若某人声称创建了一个能够识别登上飞机的恐怖分子的模型,并且准确率(accuracy)高达 99%。你...
2021-09-28 14:52:40 3367
转载 四种基本的神经网络架构
什么是神经网络神经网络是机器学习中的一种模型,是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。一般来说,神经网络的架构可以分为三类:前馈神经网络:这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。循环网络:循环网络在他们的连接图中定向了循环
2021-09-03 15:27:34 2474
原创 Jupyter notebook :常用快捷键
编辑模式与命令模式jupyter notebook中的快捷键主要有两种模式:命令模式 编辑模式juputer notebook有两种模式,编辑模式和命令模式;当处于编辑模式时时,整个代码块呈现绿色,如下图:当选中代码外部,或者在编辑模式下按下Esc键,整个代码块呈现蓝色,此时进入命令模式,此外命令模式下按下Enter键,可以再次返回编辑模式。如下图:常用快捷键:命令模式 (按键 Esc 开启):Enter: 转入编辑模式 Shift-Enter: 运行本单元,选...
2021-08-29 16:35:41 665 1
原创 Pytorch学习笔记:梯度下降算法
分治方法:先分成n×n个点进行搜索,选择最低的点,对最低的点再分成n×n份再次进行搜索,选择最小的值,反复如此,找到最小值。但是这对于凸函数是较为有用的,对于不规则的函数,可能搜索到的是极小值点(局部最优点),而不是最小值点(全局最优点)。Gradient Descent Algorithm : 梯度下降算法(贪心思想,局部最优)Gradient : 梯度,梯度大于0上升,梯度小于0下降,所以参数向梯度的反方向更新。w = w − x g ′ ( w )x:学习率损失函数的局部最优点比较少,.
2021-08-29 11:13:32 261
原创 PyTorch环境配置及安装
1. Anaconda 下载在机器学习,深度学习中,要用到大量的 package(就是各种工具包)。如果说,函数是一个工具,那么 package 就是一个工具包。一个个安装 package 很麻烦,而且容易出现疏漏。于是,就有了 Anaconda,这是一个集成了常用于科学分析(机器学习,深度学习)的大量package。也就是说,你只要安装了 Anaconda,就安装了很多我们之后要用的许多packages。(他还有很多功能,对入门帮助超大,后面再说)Anaconda 官网:https://www
2021-08-28 15:38:45 311
原创 Pytroch学习笔记:线性模型
参考视频来自B站:https://www.bilibili.com/video/BV1Y7411d7Ys?p=3深度学习的过程大致分为以下过程: 1.数据集DadaSet的准备 2.模型Moddel的选择 3.训练Training 4.推理Inferring1.数据集的准备 假设学生每天学习时间为x小时,在最后的期末考试中得到的分数是y。问题是如果每天花四个小时学习,最后分数是多少?前三条是训练过程使用的数据,最后一条是测试过程使用的数据。M...
2021-08-28 15:36:00 102
原创 python基础-综合应用(名片管理系统)
综合应用 —— 名片管理系统目标综合应用已经学习过的知识点:变量流程控制函数模块开发 名片管理系统系统需求程序启动,显示名片管理系统欢迎界面,并显示功能菜单**************************************************欢迎使用【名片管理系统】V1.01. 新建名片2. 显示全部3. 查询名片0. 退出系统**************************************************用户用
2021-04-20 21:33:52 228
原创 python基础
注释目标注释的作用单行注释(行注释)多行注释(块注释)01. 注释的作用使用用自己熟悉的语言,在程序中对某些代码进行标注说明,增强程序的可读性[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nPgICo3q-1618925342509)(./images/005/001_未使用注释的python程序.gif)]02. 单行注释(行注释)以 # 开头,# 右边的所有东西都被当做说明文字,而不是真正要执行的程序,只起到辅助说明作用示例代码如下:
2021-04-20 21:33:04 673
原创 PageHelper入门使用
第一步:在xml文件中导入依赖坐标 <dependency> <groupId>com.github.pagehelper</groupId> <artifactId>pagehelper</artifactId> <version>5.1...
2020-03-24 20:44:20 205
转载 CentOS 6.5 常用命令整理
1.Vi 基本操作1) 进入vi 在系统提示符号输入vi及文件名称后,就进入vi全屏幕编辑画面: $ vi myfile 进入vi之后,是处于「命令行模式(command mode)」,您要切换到「插入模式(Insert mode)」才能够输入文字。 2) 切换至插入模式(Insert mode)编辑文件 在「命令行模式(command mode)」下按一下字母「i」就可以进入「...
2020-02-25 15:47:40 1251
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人