1. 修改val.py代码,is_coco = True
is_coco = True
# is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
2. 下载image_info_test-dev2017.json文件,修改下面代码
anno_json = str(Path(data.get('path', '../coco')) / 'annotation/image_info_test-dev2017.json')
3. 修改coco.yaml配置文件测试图片路径(需要本地下载test2017图片)
path: ./coco/ # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # train images (relative to 'path') 5000 images
test: test-dev2017.txt # test images (optional)
4. 修改--task参数为test
parser.add_argument('--task', default='test', help='train, val, test, speed or study')
5. 运行val.py,将生成的best_predictions.json压缩成.zip包
6. 登录CodaLab网址(CodaLab - Competition)
7. 点击Submit选择第5步中的best_predictions.zip压缩包上传,等待结果即可,成功会显示Finished,点击后面+号即可查看测试结果。