CodaLab测试MS-COCO2017训练的结果,即MS-COCO2017 test-dev步骤

1. 修改val.py代码,is_coco = True

is_coco = True
# is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt')  # COCO dataset

 2. 下载image_info_test-dev2017.json文件,修改下面代码

anno_json = str(Path(data.get('path', '../coco')) / 'annotation/image_info_test-dev2017.json')

3. 修改coco.yaml配置文件测试图片路径(需要本地下载test2017图片)

path: ./coco/ # dataset root dir
train: train2017.txt  # train images (relative to 'path') 118287 images
val: val2017.txt # train images (relative to 'path') 5000 images
test: test-dev2017.txt # test images (optional)

4. 修改--task参数为test

    parser.add_argument('--task', default='test', help='train, val, test, speed or study')

5. 运行val.py,将生成的best_predictions.json压缩成.zip包

 6. 登录CodaLab网址(CodaLab - Competition

 7. 点击Submit选择第5步中的best_predictions.zip压缩包上传,等待结果即可,成功会显示Finished,点击后面+号即可查看测试结果。

 

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值